Spatial Durbin linear (SLX, spatially lagged X) model
SLX.Rd
lmSLX
fits an lm
model augmented with the spatially lagged RHS variables, including the lagged intercept when the spatial weights are not row-standardised. create_WX
creates spatially lagged RHS variables, and is exposed for use in model fitting functions.
Usage
lmSLX(formula, data = list(), listw, na.action, weights=NULL, Durbin=TRUE,
zero.policy=NULL, return_impacts=TRUE)
# S3 method for class 'SlX'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'SlX'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
# S3 method for class 'summary.SlX'
print(x, digits = max(3L, getOption("digits") - 3L),
symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...)
# S3 method for class 'SlX'
impacts(obj, ...)
# S3 method for class 'WXimpact'
print(x, ...)
# S3 method for class 'WXimpact'
summary(object, ..., adjust_k=(attr(object, "type") == "SDEM"))
# S3 method for class 'SlX'
predict(object, newdata, listw, zero.policy=NULL, ...)
create_WX(x, listw, zero.policy=NULL, prefix="")
Arguments
- formula
a symbolic description of the model to be fit. The details of model specification are given for
lm()
- data
an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.
- listw
a
listw
object created for example bynb2listw
- na.action
a function (default
options("na.action")
), can also bena.omit
orna.exclude
with consequences for residuals and fitted values - in these cases the spatial weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument tonb2listw
may be subsetted.- weights
an optional vector of weights to be used in the fitting process. Non-NULL weights can be used to indicate that different observations have different variances (with the values in weights being inversely proportional to the variances); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations (including the case that there are w_i observations equal to y_i and the data have been summarized) -
lm
- Durbin
default TRUE for
lmSLX
(Durbin model including WX); if TRUE, full spatial Durbin model; if a formula object, the subset of explanatory variables to lag- zero.policy
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
- return_impacts
default TRUE; may be set FALSE to avoid problems calculating impacts with aliased variables
- digits
the number of significant digits to use when printing
- correlation
logical; if
TRUE
, the correlation matrix of the estimated parameters is returned and printed- symbolic.cor
logical. If
TRUE
, print the correlations in a symbolic form (see 'symnum') rather than as numbers- signif.stars
logical. If
TRUE
, 'significance stars' are printed for each coefficient- obj
A spatial regression object created by
lmSLX
- ...
Arguments passed through
- prefix
default empty string, may be “lag” in some cases
- x, object
model matrix to be lagged; lagImpact objects created by
impacts
methods- adjust_k
default TRUE if SDEM else FALSE, adjust internal OLS SDEM standard errors by dividing by n rather than (n-k) (default changed and bug fixed after 0.7-8; standard errors now ML in SDEM summary and impacts summary and identical - for SLX use FALSE)
- newdata
data frame in which to predict — if NULL, predictions are for the data on which the model was fitted. Should have row names corresponding to region.id. If row names are exactly the same than the ones used for training, it uses in-sample predictors for forecast.
Value
The lmSLX
function returns an “lm” object with a “mixedImps” list of three impact matrixes (impacts and standard errors) for direct, indirect and total impacts; total impacts calculated using a simplified local copy of the estimable function from the gmodels package.
Author
Roger Bivand Roger.Bivand@nhh.no
Examples
data(oldcol, package="spdep")
lw <- spdep::nb2listw(COL.nb, style="W")
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
summary(COL.SLX)
#>
#> Call:
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))),
#> data = as.data.frame(x), weights = weights)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 7.503e+01 6.626e+00 1.132e+01 1.261e-14
#> INC -1.109e+00 3.738e-01 -2.967e+00 4.854e-03
#> HOVAL -2.897e-01 1.014e-01 -2.858e+00 6.486e-03
#> lag.INC -1.371e+00 5.613e-01 -2.443e+00 1.867e-02
#> lag.HOVAL 1.918e-01 2.003e-01 9.572e-01 3.437e-01
#>
summary(impacts(COL.SLX))
#> Impact measures (SlX, glht, n-k):
#> Direct Indirect Total
#> INC -1.1089293 -1.3709725 -2.47990173
#> HOVAL -0.2897283 0.1917608 -0.09796753
#> ========================================================
#> Standard errors:
#> Direct Indirect Total
#> INC 0.3738129 0.5612771 0.4965456
#> HOVAL 0.1013673 0.2003335 0.2028016
#> ========================================================
#> Z-values:
#> Direct Indirect Total
#> INC -2.966535 -2.4425945 -4.9943086
#> HOVAL -2.858202 0.9572079 -0.4830709
#>
#> p-values:
#> Direct Indirect Total
#> INC 0.0030118 0.014582 5.9047e-07
#> HOVAL 0.0042605 0.338462 0.62905
#>
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL + I(HOVAL^2), data=COL.OLD, listw=lw, Durbin=TRUE)
summary(impacts(COL.SLX))
#> Impact measures (SlX, glht, n-k):
#> Direct Indirect Total
#> INC -0.947594274 -1.275338647 -2.22293292
#> HOVAL -0.777427839 -0.355048446 -1.13247628
#> I(HOVAL^2) 0.004639919 0.005608104 0.01024802
#> ========================================================
#> Standard errors:
#> Direct Indirect Total
#> INC 0.398832844 0.59687399 0.56325440
#> HOVAL 0.464456540 0.98213200 1.07348981
#> I(HOVAL^2) 0.004226259 0.00908385 0.01025212
#> ========================================================
#> Z-values:
#> Direct Indirect Total
#> INC -2.375918 -2.1366966 -3.9465877
#> HOVAL -1.673844 -0.3615079 -1.0549483
#> I(HOVAL^2) 1.097879 0.6173709 0.9996008
#>
#> p-values:
#> Direct Indirect Total
#> INC 0.017505 0.032623 7.9273e-05
#> HOVAL 0.094161 0.717720 0.29145
#> I(HOVAL^2) 0.272258 0.536990 0.31750
#>
summary(COL.SLX)
#>
#> Call:
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))),
#> data = as.data.frame(x), weights = weights)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 9.246e+01 1.928e+01 4.796e+00 2.058e-05
#> INC -9.476e-01 3.988e-01 -2.376e+00 2.214e-02
#> HOVAL -7.774e-01 4.645e-01 -1.674e+00 1.016e-01
#> I.HOVAL.2. 4.640e-03 4.226e-03 1.098e+00 2.785e-01
#> lag.INC -1.275e+00 5.969e-01 -2.137e+00 3.849e-02
#> lag.HOVAL -3.550e-01 9.821e-01 -3.615e-01 7.195e-01
#> lag.I.HOVAL.2. 5.608e-03 9.084e-03 6.174e-01 5.403e-01
#>
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL + I(HOVAL^2), data=COL.OLD, listw=lw, Durbin=~INC)
summary(impacts(COL.SLX))
#> Impact measures (SlX, glht, n-k):
#> Direct Indirect Total
#> INC -1.079064628 -1.010896 -2.089960575
#> HOVAL -0.634518755 NA -0.634518755
#> I(HOVAL^2) 0.003455273 NA 0.003455273
#> ========================================================
#> Standard errors:
#> Direct Indirect Total
#> INC 0.38471071 0.4552667 0.44650193
#> HOVAL 0.44760078 NA 0.44760078
#> I(HOVAL^2) 0.00411036 NA 0.00411036
#> ========================================================
#> Z-values:
#> Direct Indirect Total
#> INC -2.8048728 -2.220448 -4.6807425
#> HOVAL -1.4175997 NA -1.4175997
#> I(HOVAL^2) 0.8406254 NA 0.8406254
#>
#> p-values:
#> Direct Indirect Total
#> INC 0.0050336 0.026388 2.8584e-06
#> HOVAL 0.1563077 NA 0.15631
#> I(HOVAL^2) 0.4005579 NA 0.40056
#>
summary(COL.SLX)
#>
#> Call:
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))),
#> data = as.data.frame(x), weights = weights)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 8.368e+01 9.265e+00 9.032e+00 1.401e-11
#> INC -1.079e+00 3.847e-01 -2.805e+00 7.466e-03
#> HOVAL -6.345e-01 4.476e-01 -1.418e+00 1.634e-01
#> I.HOVAL.2. 3.455e-03 4.110e-03 8.406e-01 4.051e-01
#> lag.INC -1.011e+00 4.553e-01 -2.220e+00 3.159e-02
#>
COL.SLX <- lmSLX(CRIME ~ INC, data=COL.OLD, listw=lw)
summary(COL.SLX)
#>
#> Call:
#> lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))),
#> data = as.data.frame(x), weights = weights)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 7.398e+01 6.208e+00 1.192e+01 1.155e-15
#> INC -1.589e+00 3.564e-01 -4.458e+00 5.276e-05
#> lag.INC -1.086e+00 4.812e-01 -2.257e+00 2.882e-02
#>
summary(impacts(COL.SLX))
#> Impact measures (SlX, glht, n-k):
#> Direct Indirect Total
#> INC -1.588901 -1.085867 -2.674768
#> ========================================================
#> Standard errors:
#> Direct Indirect Total
#> INC 0.3564039 0.4811809 0.407313
#> ========================================================
#> Z-values:
#> Direct Indirect Total
#> INC -4.458147 -2.256671 -6.566861
#>
#> p-values:
#> Direct Indirect Total
#> INC 8.2671e-06 0.024029 5.1387e-11
#>
if (FALSE) { # \dontrun{
crds <- cbind(COL.OLD$X, COL.OLD$Y)
mdist <- sqrt(sum(diff(apply(crds, 2, range))^2))
dnb <- spdep::dnearneigh(crds, 0, mdist)
dists <- spdep::nbdists(dnb, crds)
f <- function(x, form, data, dnb, dists, verbose) {
glst <- lapply(dists, function(d) 1/(d^x))
lw <- spdep::nb2listw(dnb, glist=glst, style="B")
res <- logLik(lmSLX(form=form, data=data, listw=lw))
if (verbose) cat("power:", x, "logLik:", res, "\n")
res
}
opt <- optimize(f, interval=c(0.1, 4), form=CRIME ~ INC + HOVAL,
data=COL.OLD, dnb=dnb, dists=dists, verbose=TRUE, maximum=TRUE)
glst <- lapply(dists, function(d) 1/(d^opt$maximum))
lw <- spdep::nb2listw(dnb, glist=glst, style="B")
SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
summary(SLX)
summary(impacts(SLX))
} # }
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
pslx0 <- predict(COL.SLX)
pslx1 <- predict(COL.SLX, newdata=COL.OLD, listw=lw)
all.equal(pslx0, pslx1)
#> [1] TRUE
COL.OLD1 <- COL.OLD
COL.OLD1$INC <- COL.OLD1$INC + 1
pslx2 <- predict(COL.SLX, newdata=COL.OLD1, listw=lw)
sum(coef(COL.SLX)[c(2,4)])
#> [1] -2.479902
mean(pslx2-pslx1)
#> [1] -2.479902