Skip to contents

The MCMCsamp method uses rwmetrop, a random walk Metropolis algorithm, from LearnBayes to make MCMC samples from fitted maximum likelihood spatial regression models.

Usage

MCMCsamp(object, mcmc = 1L, verbose = NULL, ...)
# S3 method for class 'Spautolm'
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...,
 burnin = 0L, scale=1, listw, control = list())
# S3 method for class 'Sarlm'
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...,
    burnin=0L, scale=1, listw, listw2=NULL, control=list())

Arguments

object

A spatial regression model object fitted by maximum likelihood with spautolm

mcmc

The number of MCMC iterations after burnin

verbose

default NULL, use global option value; if TRUE, reports progress

...

Arguments passed through

burnin

The number of burn-in iterations for the sampler

scale

a positive scale parameter

listw, listw2

listw objects created for example by nb2listw; should be the same object(s) used for fitting the model

control

list of extra control arguments - see spautolm

Value

An object of class “mcmc” suited to coda, with attributes: “accept” acceptance rate; “type” input ML fitted model type “SAR”, “CAR”, “SMA”, “lag”, “mixed”, “error”, “sac”, “sacmixed”; “timings” run times

Note

If the acceptance rate is below 0.05, a warning will be issued; consider increasing mcmc.

References

Jim Albert (2007) Bayesian Computation with R, Springer, New York, pp. 104-105.

Author

Roger Bivand Roger.Bivand@nhh.no

Examples

require("sf", quietly=TRUE)
nydata <- st_read(system.file("shapes/NY8_bna_utm18.gpkg", package="spData")[1], quiet=TRUE)
suppressMessages(nyadjmat <- as.matrix(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1])[-1]))
suppressMessages(ID <- as.character(names(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1]))[-1]))
identical(substring(ID, 2, 10), substring(as.character(nydata$AREAKEY), 2, 10))
#> [1] TRUE
#require("spdep", quietly=TRUE)
listw_NY <- spdep::mat2listw(nyadjmat, as.character(nydata$AREAKEY), style="B")
esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="SAR", method="eigen")
summary(esar1f)
#> 
#> Call: 
#> spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata, 
#>     listw = listw_NY, family = "SAR", method = "eigen")
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1.56754 -0.38239 -0.02643  0.33109  4.01219 
#> 
#> Coefficients: 
#>              Estimate Std. Error z value  Pr(>|z|)
#> (Intercept) -0.618193   0.176784 -3.4969 0.0004707
#> PEXPOSURE    0.071014   0.042051  1.6888 0.0912635
#> PCTAGE65P    3.754200   0.624722  6.0094 1.862e-09
#> PCTOWNHOME  -0.419890   0.191329 -2.1946 0.0281930
#> 
#> Lambda: 0.040487 LR test value: 5.2438 p-value: 0.022026 
#> Numerical Hessian standard error of lambda: 0.017201 
#> 
#> Log likelihood: -276.1069 
#> ML residual variance (sigma squared): 0.41388, (sigma: 0.64333)
#> Number of observations: 281 
#> Number of parameters estimated: 6 
#> AIC: 564.21
#> 
res <- MCMCsamp(esar1f, mcmc=1000, burnin=200, listw=listw_NY)
summary(res)
#> 
#> Iterations = 1:1000
#> Thinning interval = 1 
#> Number of chains = 1 
#> Sample size per chain = 1000 
#> 
#> 1. Empirical mean and standard deviation for each variable,
#>    plus standard error of the mean:
#> 
#>                 Mean      SD  Naive SE Time-series SE
#> lambda       0.04611 0.01498 0.0004736       0.001756
#> (Intercept) -0.65331 0.19263 0.0060916       0.026540
#> PEXPOSURE    0.08968 0.04897 0.0015486       0.006607
#> PCTAGE65P    3.69656 0.52425 0.0165784       0.057839
#> PCTOWNHOME  -0.39485 0.23949 0.0075732       0.037397
#> 
#> 2. Quantiles for each variable:
#> 
#>                  2.5%      25%      50%      75%    97.5%
#> lambda       0.015004  0.03557  0.04640  0.05531  0.07351
#> (Intercept) -1.089847 -0.77125 -0.63878 -0.51969 -0.34027
#> PEXPOSURE   -0.001914  0.05288  0.09113  0.12367  0.18519
#> PCTAGE65P    2.672002  3.33982  3.67753  4.04290  4.74392
#> PCTOWNHOME  -0.845780 -0.56384 -0.41154 -0.21860  0.07637
#> 
if (FALSE) { # \dontrun{
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ecar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="CAR", method="eigen")
summary(ecar1f)
res <- MCMCsamp(ecar1f, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ecar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="CAR", method="eigen")
summary(ecar1fw)
res <- MCMCsamp(ecar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
} # }
esar0 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(esar0)
#> 
#> Call:errorsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, 
#>     data = nydata, listw = listw_NY)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1.56754 -0.38239 -0.02643  0.33109  4.01219 
#> 
#> Type: error 
#> Coefficients: (asymptotic standard errors) 
#>              Estimate Std. Error z value  Pr(>|z|)
#> (Intercept) -0.618193   0.176784 -3.4969 0.0004707
#> PEXPOSURE    0.071014   0.042051  1.6888 0.0912635
#> PCTAGE65P    3.754200   0.624722  6.0094 1.862e-09
#> PCTOWNHOME  -0.419890   0.191329 -2.1946 0.0281930
#> 
#> Lambda: 0.040487, LR test value: 5.2438, p-value: 0.022026
#> Asymptotic standard error: 0.016214
#>     z-value: 2.4971, p-value: 0.01252
#> Wald statistic: 6.2356, p-value: 0.01252
#> 
#> Log likelihood: -276.1069 for error model
#> ML residual variance (sigma squared): 0.41388, (sigma: 0.64333)
#> Number of observations: 281 
#> Number of parameters estimated: 6 
#> AIC: 564.21, (AIC for lm: 567.46)
#> 
res <- MCMCsamp(esar0, mcmc=1000, burnin=200, listw=listw_NY)
summary(res)
#> 
#> Iterations = 1:1000
#> Thinning interval = 1 
#> Number of chains = 1 
#> Sample size per chain = 1000 
#> 
#> 1. Empirical mean and standard deviation for each variable,
#>    plus standard error of the mean:
#> 
#>                 Mean      SD  Naive SE Time-series SE
#> lambda       0.04086 0.01436 0.0004541       0.001639
#> (Intercept) -0.62555 0.18275 0.0057791       0.024443
#> PEXPOSURE    0.06900 0.04034 0.0012758       0.004965
#> PCTAGE65P    3.68791 0.64881 0.0205172       0.077680
#> PCTOWNHOME  -0.38263 0.19769 0.0062513       0.025188
#> 
#> 2. Quantiles for each variable:
#> 
#>                  2.5%      25%      50%      75%     97.5%
#> lambda       0.014717  0.03100  0.04103  0.05272  0.065715
#> (Intercept) -0.972641 -0.75486 -0.63637 -0.50400 -0.198074
#> PEXPOSURE   -0.004903  0.03891  0.06820  0.09560  0.152374
#> PCTAGE65P    2.382993  3.31371  3.67406  4.12972  4.919868
#> PCTOWNHOME  -0.779951 -0.49064 -0.38080 -0.25234 -0.003732
#> 
if (FALSE) { # \dontrun{
esar0w <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8)
summary(esar0)
res <- MCMCsamp(esar0w, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
esar1 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, etype="emixed")
summary(esar1)
res <- MCMCsamp(esar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
lsar0 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(lsar0)
res <- MCMCsamp(lsar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
lsar1 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, type="mixed")
summary(lsar1)
res <- MCMCsamp(lsar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ssar0 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(ssar0)
res <- MCMCsamp(ssar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ssar1 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, type="sacmixed")
summary(ssar1)
res <- MCMCsamp(ssar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
} # }