MCMC sample from fitted spatial regression
MCMCsamp.Rd
The MCMCsamp
method uses rwmetrop
, a random walk Metropolis algorithm, from LearnBayes to make MCMC samples from fitted maximum likelihood spatial regression models.
Usage
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...)
# S3 method for class 'Spautolm'
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...,
burnin = 0L, scale=1, listw, control = list())
# S3 method for class 'Sarlm'
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...,
burnin=0L, scale=1, listw, listw2=NULL, control=list())
Arguments
- object
A spatial regression model object fitted by maximum likelihood with
spautolm
- mcmc
The number of MCMC iterations after burnin
- verbose
default NULL, use global option value; if TRUE, reports progress
- ...
Arguments passed through
- burnin
The number of burn-in iterations for the sampler
- scale
a positive scale parameter
- listw, listw2
listw
objects created for example bynb2listw
; should be the same object(s) used for fitting the model- control
list of extra control arguments - see
spautolm
Value
An object of class “mcmc” suited to coda, with attributes: “accept” acceptance rate; “type” input ML fitted model type “SAR”, “CAR”, “SMA”, “lag”, “mixed”, “error”, “sac”, “sacmixed”; “timings” run times
Author
Roger Bivand Roger.Bivand@nhh.no
Examples
require("sf", quietly=TRUE)
nydata <- st_read(system.file("shapes/NY8_bna_utm18.gpkg", package="spData")[1], quiet=TRUE)
suppressMessages(nyadjmat <- as.matrix(foreign::read.dbf(system.file(
"misc/nyadjwts.dbf", package="spData")[1])[-1]))
suppressMessages(ID <- as.character(names(foreign::read.dbf(system.file(
"misc/nyadjwts.dbf", package="spData")[1]))[-1]))
identical(substring(ID, 2, 10), substring(as.character(nydata$AREAKEY), 2, 10))
#> [1] TRUE
#require("spdep", quietly=TRUE)
listw_NY <- spdep::mat2listw(nyadjmat, as.character(nydata$AREAKEY), style="B")
esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, family="SAR", method="eigen")
summary(esar1f)
#>
#> Call:
#> spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY, family = "SAR", method = "eigen")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.56754 -0.38239 -0.02643 0.33109 4.01219
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.618193 0.176784 -3.4969 0.0004707
#> PEXPOSURE 0.071014 0.042051 1.6888 0.0912635
#> PCTAGE65P 3.754200 0.624722 6.0094 1.862e-09
#> PCTOWNHOME -0.419890 0.191329 -2.1946 0.0281930
#>
#> Lambda: 0.040487 LR test value: 5.2438 p-value: 0.022026
#> Numerical Hessian standard error of lambda: 0.017201
#>
#> Log likelihood: -276.1069
#> ML residual variance (sigma squared): 0.41388, (sigma: 0.64333)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: 564.21
#>
res <- MCMCsamp(esar1f, mcmc=1000, burnin=200, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:1000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 1000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.04611 0.01498 0.0004736 0.001756
#> (Intercept) -0.65331 0.19263 0.0060916 0.026540
#> PEXPOSURE 0.08968 0.04897 0.0015486 0.006607
#> PCTAGE65P 3.69656 0.52425 0.0165784 0.057839
#> PCTOWNHOME -0.39485 0.23949 0.0075732 0.037397
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda 0.015004 0.03557 0.04640 0.05531 0.07351
#> (Intercept) -1.089847 -0.77125 -0.63878 -0.51969 -0.34027
#> PEXPOSURE -0.001914 0.05288 0.09113 0.12367 0.18519
#> PCTAGE65P 2.672002 3.33982 3.67753 4.04290 4.74392
#> PCTOWNHOME -0.845780 -0.56384 -0.41154 -0.21860 0.07637
#>
# \dontrun{
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
#>
#> Call:
#> spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY, weights = POP8, family = "SAR", method = "eigen")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.48488 -0.26823 0.09489 0.46552 4.28343
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.797063 0.144054 -5.5331 3.146e-08
#> PEXPOSURE 0.080545 0.028334 2.8428 0.004473
#> PCTAGE65P 3.816731 0.576037 6.6258 3.453e-11
#> PCTOWNHOME -0.380778 0.156507 -2.4330 0.014975
#>
#> Lambda: 0.0095636 LR test value: 0.32665 p-value: 0.56764
#> Numerical Hessian standard error of lambda: 0.016522
#>
#> Log likelihood: -251.6017
#> ML residual variance (sigma squared): 1104.1, (sigma: 33.229)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: NA (not available for weighted model)
#>
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.01296 0.01568 0.0002218 0.0008193
#> (Intercept) -0.79417 0.15064 0.0021303 0.0085373
#> PEXPOSURE 0.07886 0.02974 0.0004206 0.0016661
#> PCTAGE65P 3.79201 0.58160 0.0082250 0.0316924
#> PCTOWNHOME -0.38114 0.16875 0.0023864 0.0100745
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda -0.01785 0.00281 0.01326 0.02352 0.04254
#> (Intercept) -1.09757 -0.89163 -0.79274 -0.69957 -0.47937
#> PEXPOSURE 0.02125 0.05871 0.07958 0.09926 0.13413
#> PCTAGE65P 2.68865 3.36618 3.80173 4.17535 4.89445
#> PCTOWNHOME -0.70327 -0.49343 -0.37753 -0.27046 -0.03549
#>
ecar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, family="CAR", method="eigen")
summary(ecar1f)
#>
#> Call:
#> spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY, family = "CAR", method = "eigen")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.539732 -0.384311 -0.030646 0.335126 3.808848
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.648362 0.181129 -3.5796 0.0003442
#> PEXPOSURE 0.077899 0.043692 1.7829 0.0745986
#> PCTAGE65P 3.703830 0.627185 5.9055 3.516e-09
#> PCTOWNHOME -0.382789 0.195564 -1.9574 0.0503053
#>
#> Lambda: 0.084123 LR test value: 5.8009 p-value: 0.016018
#> Numerical Hessian standard error of lambda: 0.030872
#>
#> Log likelihood: -275.8283
#> ML residual variance (sigma squared): 0.40758, (sigma: 0.63842)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: 563.66
#>
res <- MCMCsamp(ecar1f, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.08485 0.03007 0.0004252 0.001841
#> (Intercept) -0.66321 0.21541 0.0030463 0.014591
#> PEXPOSURE 0.08242 0.04990 0.0007057 0.003038
#> PCTAGE65P 3.65269 0.64308 0.0090945 0.039341
#> PCTOWNHOME -0.35759 0.22515 0.0031840 0.014851
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda 0.021075 0.06565 0.08492 0.1070 0.1398
#> (Intercept) -1.173329 -0.78618 -0.63961 -0.5233 -0.2863
#> PEXPOSURE -0.008489 0.04927 0.07836 0.1125 0.1967
#> PCTAGE65P 2.400330 3.17755 3.65477 4.0908 4.9428
#> PCTOWNHOME -0.761115 -0.51656 -0.37324 -0.2168 0.1507
#>
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
#>
#> Call:
#> spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY, weights = POP8, family = "SAR", method = "eigen")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.48488 -0.26823 0.09489 0.46552 4.28343
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.797063 0.144054 -5.5331 3.146e-08
#> PEXPOSURE 0.080545 0.028334 2.8428 0.004473
#> PCTAGE65P 3.816731 0.576037 6.6258 3.453e-11
#> PCTOWNHOME -0.380778 0.156507 -2.4330 0.014975
#>
#> Lambda: 0.0095636 LR test value: 0.32665 p-value: 0.56764
#> Numerical Hessian standard error of lambda: 0.016522
#>
#> Log likelihood: -251.6017
#> ML residual variance (sigma squared): 1104.1, (sigma: 33.229)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: NA (not available for weighted model)
#>
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.01421 0.01648 0.000233 0.0009767
#> (Intercept) -0.79603 0.15920 0.002251 0.0097286
#> PEXPOSURE 0.08092 0.03097 0.000438 0.0018774
#> PCTAGE65P 3.77070 0.60576 0.008567 0.0381835
#> PCTOWNHOME -0.37884 0.17038 0.002410 0.0102914
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda -0.01732 0.002764 0.01370 0.02629 0.04646
#> (Intercept) -1.12961 -0.899430 -0.80307 -0.69685 -0.48183
#> PEXPOSURE 0.02262 0.059634 0.08016 0.10062 0.14212
#> PCTAGE65P 2.58384 3.361796 3.81098 4.18747 4.90361
#> PCTOWNHOME -0.69813 -0.495245 -0.38500 -0.26182 -0.03602
#>
ecar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=POP8, family="CAR", method="eigen")
summary(ecar1fw)
#>
#> Call:
#> spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY, weights = POP8, family = "CAR", method = "eigen")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.491042 -0.270906 0.081435 0.451556 4.198134
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.790154 0.144862 -5.4545 4.910e-08
#> PEXPOSURE 0.081922 0.028593 2.8651 0.004169
#> PCTAGE65P 3.825858 0.577720 6.6223 3.536e-11
#> PCTOWNHOME -0.386820 0.157436 -2.4570 0.014010
#>
#> Lambda: 0.022419 LR test value: 0.38785 p-value: 0.53343
#> Numerical Hessian standard error of lambda: 0.038977
#>
#> Log likelihood: -251.5711
#> ML residual variance (sigma squared): 1102.9, (sigma: 33.21)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: NA (not available for weighted model)
#>
res <- MCMCsamp(ecar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.03646 0.04020 0.0005686 0.002593
#> (Intercept) -0.83219 0.15755 0.0022281 0.009562
#> PEXPOSURE 0.09116 0.03438 0.0004863 0.002139
#> PCTAGE65P 3.74091 0.59000 0.0083439 0.035836
#> PCTOWNHOME -0.34906 0.17055 0.0024119 0.010630
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda -0.04545 0.009909 0.04055 0.06473 0.108790
#> (Intercept) -1.15043 -0.936965 -0.82876 -0.72797 -0.532623
#> PEXPOSURE 0.02618 0.068120 0.08997 0.11245 0.165457
#> PCTAGE65P 2.56456 3.350294 3.72433 4.13057 4.958447
#> PCTOWNHOME -0.69327 -0.461490 -0.34685 -0.24507 -0.001185
#>
# }
esar0 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY)
summary(esar0)
#>
#> Call:errorsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
#> data = nydata, listw = listw_NY)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.56754 -0.38239 -0.02643 0.33109 4.01219
#>
#> Type: error
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.618193 0.176784 -3.4969 0.0004707
#> PEXPOSURE 0.071014 0.042051 1.6888 0.0912635
#> PCTAGE65P 3.754200 0.624722 6.0094 1.862e-09
#> PCTOWNHOME -0.419890 0.191329 -2.1946 0.0281930
#>
#> Lambda: 0.040487, LR test value: 5.2438, p-value: 0.022026
#> Asymptotic standard error: 0.016214
#> z-value: 2.4971, p-value: 0.01252
#> Wald statistic: 6.2356, p-value: 0.01252
#>
#> Log likelihood: -276.1069 for error model
#> ML residual variance (sigma squared): 0.41388, (sigma: 0.64333)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: 564.21, (AIC for lm: 567.46)
#>
res <- MCMCsamp(esar0, mcmc=1000, burnin=200, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:1000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 1000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.04682 0.01895 0.0005993 0.002739
#> (Intercept) -0.65775 0.21896 0.0069243 0.031633
#> PEXPOSURE 0.08543 0.05260 0.0016634 0.007626
#> PCTAGE65P 3.65044 0.57371 0.0181422 0.060983
#> PCTOWNHOME -0.36116 0.23745 0.0075089 0.036472
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda 0.0109828 0.03340 0.04839 0.05958 0.08139
#> (Intercept) -1.0771095 -0.81427 -0.62781 -0.51408 -0.23029
#> PEXPOSURE -0.0004135 0.04738 0.07927 0.11564 0.20607
#> PCTAGE65P 2.5911599 3.20769 3.63005 4.09097 4.74100
#> PCTOWNHOME -0.8037868 -0.54136 -0.35322 -0.20277 0.17058
#>
# \dontrun{
esar0w <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, weights=POP8)
summary(esar0)
#>
#> Call:errorsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
#> data = nydata, listw = listw_NY)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.56754 -0.38239 -0.02643 0.33109 4.01219
#>
#> Type: error
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.618193 0.176784 -3.4969 0.0004707
#> PEXPOSURE 0.071014 0.042051 1.6888 0.0912635
#> PCTAGE65P 3.754200 0.624722 6.0094 1.862e-09
#> PCTOWNHOME -0.419890 0.191329 -2.1946 0.0281930
#>
#> Lambda: 0.040487, LR test value: 5.2438, p-value: 0.022026
#> Asymptotic standard error: 0.016214
#> z-value: 2.4971, p-value: 0.01252
#> Wald statistic: 6.2356, p-value: 0.01252
#>
#> Log likelihood: -276.1069 for error model
#> ML residual variance (sigma squared): 0.41388, (sigma: 0.64333)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: 564.21, (AIC for lm: 567.46)
#>
res <- MCMCsamp(esar0w, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.01177 0.01571 0.0002221 0.0008781
#> (Intercept) -0.79575 0.14274 0.0020186 0.0078442
#> PEXPOSURE 0.08036 0.02929 0.0004143 0.0017545
#> PCTAGE65P 3.81500 0.57129 0.0080793 0.0330363
#> PCTOWNHOME -0.38426 0.15508 0.0021932 0.0087813
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda -0.01899 0.00175 0.01220 0.02213 0.04328
#> (Intercept) -1.07330 -0.89063 -0.79366 -0.70020 -0.51399
#> PEXPOSURE 0.02200 0.06082 0.08123 0.10067 0.13675
#> PCTAGE65P 2.70738 3.41885 3.80976 4.20150 4.94589
#> PCTOWNHOME -0.70906 -0.47931 -0.38839 -0.28703 -0.06345
#>
esar1 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, etype="emixed")
summary(esar1)
#>
#> Call:errorsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
#> data = nydata, listw = listw_NY, etype = "emixed")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.81562 -0.37641 -0.02224 0.33638 4.00054
#>
#> Type: error
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.118019 0.247425 -4.5186 6.225e-06
#> PEXPOSURE 0.218279 0.079245 2.7545 0.005879
#> PCTAGE65P 3.416477 0.645587 5.2920 1.210e-07
#> PCTOWNHOME 0.036593 0.249835 0.1465 0.883551
#> lag.(Intercept) 0.121515 0.057636 2.1083 0.035003
#> lag.PEXPOSURE -0.035075 0.015943 -2.2000 0.027808
#> lag.PCTAGE65P 0.263096 0.220118 1.1953 0.231989
#> lag.PCTOWNHOME -0.155680 0.059213 -2.6291 0.008560
#>
#> Lambda: 0.022723, LR test value: 1.6846, p-value: 0.19432
#> Asymptotic standard error: 0.017169
#> z-value: 1.3235, p-value: 0.18567
#> Wald statistic: 1.7516, p-value: 0.18567
#>
#> Log likelihood: -269.5398 for error model
#> ML residual variance (sigma squared): 0.39759, (sigma: 0.63055)
#> Number of observations: 281
#> Number of parameters estimated: 10
#> AIC: 559.08, (AIC for lm: 558.76)
#>
res <- MCMCsamp(esar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> lambda 0.02791 0.01696 0.0002398 0.001257
#> (Intercept) -1.11089 0.24295 0.0034359 0.019066
#> PEXPOSURE 0.20998 0.08066 0.0011407 0.006616
#> PCTAGE65P 3.44550 0.61861 0.0087484 0.045120
#> PCTOWNHOME 0.03249 0.25058 0.0035437 0.022380
#> lag.(Intercept) 0.11788 0.05850 0.0008273 0.004548
#> lag.PEXPOSURE -0.03381 0.01626 0.0002299 0.001358
#> lag.PCTAGE65P 0.25893 0.23503 0.0033238 0.019521
#> lag.PCTOWNHOME -0.15337 0.05824 0.0008236 0.004496
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> lambda -0.004792 0.01604 0.02829 0.03980 0.0616941
#> (Intercept) -1.549205 -1.28823 -1.12499 -0.91520 -0.6509996
#> PEXPOSURE 0.063165 0.15363 0.20577 0.26455 0.3711420
#> PCTAGE65P 2.335975 3.01533 3.44864 3.91005 4.6644758
#> PCTOWNHOME -0.505045 -0.11695 0.05420 0.19038 0.5171339
#> lag.(Intercept) 0.006027 0.07616 0.11689 0.16220 0.2310606
#> lag.PEXPOSURE -0.064845 -0.04488 -0.03385 -0.02339 -0.0009086
#> lag.PCTAGE65P -0.195440 0.09430 0.24778 0.43584 0.6912104
#> lag.PCTOWNHOME -0.263176 -0.19213 -0.15386 -0.11592 -0.0317401
#>
lsar0 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY)
summary(lsar0)
#>
#> Call:lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.586752 -0.391580 -0.022469 0.338017 4.029430
#>
#> Type: lag
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.514495 0.156154 -3.2948 0.000985
#> PEXPOSURE 0.047627 0.034509 1.3801 0.167542
#> PCTAGE65P 3.648198 0.599046 6.0900 1.129e-09
#> PCTOWNHOME -0.414601 0.169554 -2.4453 0.014475
#>
#> Rho: 0.038893, LR test value: 6.9683, p-value: 0.0082967
#> Asymptotic standard error: 0.015053
#> z-value: 2.5837, p-value: 0.0097755
#> Wald statistic: 6.6754, p-value: 0.0097755
#>
#> Log likelihood: -275.2447 for lag model
#> ML residual variance (sigma squared): 0.41166, (sigma: 0.6416)
#> Number of observations: 281
#> Number of parameters estimated: 6
#> AIC: 562.49, (AIC for lm: 567.46)
#> LM test for residual autocorrelation
#> test value: 1.4633, p-value: 0.22641
#>
res <- MCMCsamp(lsar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> rho 0.03924 0.01531 0.0002166 0.0009369
#> (Intercept) -0.51482 0.16721 0.0023647 0.0103798
#> PEXPOSURE 0.05057 0.03374 0.0004771 0.0019411
#> PCTAGE65P 3.58543 0.66827 0.0094508 0.0442173
#> PCTOWNHOME -0.41083 0.18638 0.0026358 0.0118147
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> rho 0.01129 0.02805 0.03879 0.05012 0.07010
#> (Intercept) -0.84632 -0.62884 -0.50852 -0.39309 -0.20739
#> PEXPOSURE -0.01768 0.02886 0.04981 0.07205 0.11808
#> PCTAGE65P 2.28982 3.12634 3.60888 4.03227 4.88549
#> PCTOWNHOME -0.74664 -0.54787 -0.40497 -0.28735 -0.03815
#>
lsar1 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, type="mixed")
summary(lsar1)
#>
#> Call:lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY, type = "mixed")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.799308 -0.390125 -0.021371 0.346128 3.965251
#>
#> Type: mixed
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.131233 0.249631 -4.5316 5.853e-06
#> PEXPOSURE 0.218364 0.079301 2.7536 0.005894
#> PCTAGE65P 3.361158 0.654123 5.1384 2.771e-07
#> PCTOWNHOME 0.071903 0.253967 0.2831 0.777085
#> lag.(Intercept) 0.132544 0.056175 2.3595 0.018300
#> lag.PEXPOSURE -0.035239 0.015536 -2.2681 0.023322
#> lag.PCTAGE65P 0.161685 0.223690 0.7228 0.469798
#> lag.PCTOWNHOME -0.140681 0.058529 -2.4036 0.016234
#>
#> Rho: 0.026981, LR test value: 2.558, p-value: 0.10974
#> Asymptotic standard error: 0.016766
#> z-value: 1.6093, p-value: 0.10755
#> Wald statistic: 2.5899, p-value: 0.10755
#>
#> Log likelihood: -269.1031 for mixed model
#> ML residual variance (sigma squared): 0.39587, (sigma: 0.62918)
#> Number of observations: 281
#> Number of parameters estimated: 10
#> AIC: 558.21, (AIC for lm: 558.76)
#> LM test for residual autocorrelation
#> test value: 4.908, p-value: 0.026732
#>
res <- MCMCsamp(lsar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> rho 0.02471 0.01629 0.0002304 0.001219
#> (Intercept) -1.12989 0.24291 0.0034353 0.017687
#> PEXPOSURE 0.21704 0.08665 0.0012254 0.007356
#> PCTAGE65P 3.40551 0.61299 0.0086689 0.043441
#> PCTOWNHOME 0.04146 0.25683 0.0036321 0.019859
#> lag.(Intercept) 0.12868 0.05650 0.0007991 0.004535
#> lag.PEXPOSURE -0.03472 0.01732 0.0002449 0.001526
#> lag.PCTAGE65P 0.17214 0.20763 0.0029364 0.015671
#> lag.PCTOWNHOME -0.13618 0.06186 0.0008749 0.005326
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> rho -0.008938 0.01339 0.02554 0.03617 0.054650
#> (Intercept) -1.604105 -1.28894 -1.12504 -0.97119 -0.660270
#> PEXPOSURE 0.053725 0.15881 0.21725 0.27236 0.389018
#> PCTAGE65P 2.213387 2.99625 3.42281 3.85452 4.551724
#> PCTOWNHOME -0.451879 -0.14346 0.04721 0.22476 0.545593
#> lag.(Intercept) 0.019705 0.09016 0.13030 0.16767 0.243720
#> lag.PEXPOSURE -0.067460 -0.04719 -0.03527 -0.02388 0.003145
#> lag.PCTAGE65P -0.238603 0.04557 0.17728 0.29777 0.562834
#> lag.PCTOWNHOME -0.246111 -0.18197 -0.13460 -0.09357 -0.018730
#>
ssar0 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY)
summary(ssar0)
#>
#> Call:sacsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.468382 -0.375687 -0.034996 0.314714 3.833950
#>
#> Type: sac
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.386572 0.123188 -3.1381 0.001701
#> PEXPOSURE 0.026684 0.024013 1.1112 0.266479
#> PCTAGE65P 3.089824 0.562851 5.4896 4.029e-08
#> PCTOWNHOME -0.323052 0.137449 -2.3503 0.018756
#>
#> Rho: 0.089451
#> Asymptotic standard error: 0.019427
#> z-value: 4.6046, p-value: 4.1325e-06
#> Lambda: -0.08192
#> Asymptotic standard error: 0.033201
#> z-value: -2.4674, p-value: 0.01361
#>
#> LR test value: 10.114, p-value: 0.0063661
#>
#> Log likelihood: -273.672 for sac model
#> ML residual variance (sigma squared): 0.3766, (sigma: 0.61368)
#> Number of observations: 281
#> Number of parameters estimated: 7
#> AIC: 561.34, (AIC for lm: 567.46)
#>
res <- MCMCsamp(ssar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> rho -0.04897 0.07268 0.001028 0.02171
#> lambda 0.07158 0.07109 0.001005 0.01911
#> (Intercept) -0.79253 0.30171 0.004267 0.05929
#> PEXPOSURE 0.12518 0.08005 0.001132 0.01428
#> PCTAGE65P 3.33373 0.62239 0.008802 0.04114
#> PCTOWNHOME -0.24558 0.24700 0.003493 0.03231
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> rho -0.148205 -0.10220 -0.07484 -0.0003653 0.09879
#> lambda -0.097739 0.03709 0.10543 0.1218063 0.13809
#> (Intercept) -1.371833 -1.01584 -0.80342 -0.5327538 -0.26199
#> PEXPOSURE -0.001867 0.05674 0.12102 0.1859304 0.27450
#> PCTAGE65P 2.139989 2.91933 3.33752 3.7143648 4.58803
#> PCTOWNHOME -0.743597 -0.40260 -0.25567 -0.0792356 0.24964
#>
ssar1 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
listw=listw_NY, type="sacmixed")
summary(ssar1)
#>
#> Call:sacsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = nydata,
#> listw = listw_NY, type = "sacmixed")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.633958 -0.363826 -0.019927 0.348238 3.655509
#>
#> Type: sacmixed
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.133298 0.247495 -4.5791 4.670e-06
#> PEXPOSURE 0.206963 0.074480 2.7788 0.005456
#> PCTAGE65P 3.083983 0.671081 4.5955 4.316e-06
#> PCTOWNHOME 0.174800 0.256280 0.6821 0.495196
#> lag.(Intercept) 0.153427 0.050817 3.0192 0.002534
#> lag.PEXPOSURE -0.033400 0.013817 -2.4173 0.015634
#> lag.PCTAGE65P -0.079738 0.222144 -0.3589 0.719634
#> lag.PCTOWNHOME -0.102502 0.056760 -1.8059 0.070940
#>
#> Rho: 0.092495
#> Asymptotic standard error: 0.023829
#> z-value: 3.8817, p-value: 0.00010375
#> Lambda: -0.091069
#> Asymptotic standard error: 0.038431
#> z-value: -2.3697, p-value: 0.017804
#>
#> LR test value: 22.379, p-value: 0.0010335
#>
#> Log likelihood: -267.5392 for sacmixed model
#> ML residual variance (sigma squared): 0.35617, (sigma: 0.5968)
#> Number of observations: 281
#> Number of parameters estimated: 11
#> AIC: 557.08, (AIC for lm: 567.46)
#>
res <- MCMCsamp(ssar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
#>
#> Iterations = 1:5000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 5000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> rho -0.005935 0.06247 0.0008835 0.012391
#> lambda 0.025149 0.06578 0.0009302 0.012564
#> (Intercept) -1.104966 0.25946 0.0036694 0.020691
#> PEXPOSURE 0.220056 0.08072 0.0011415 0.006564
#> PCTAGE65P 3.448064 0.68477 0.0096841 0.053253
#> PCTOWNHOME 0.002352 0.25423 0.0035954 0.018914
#> lag.(Intercept) 0.107623 0.06651 0.0009406 0.007925
#> lag.PEXPOSURE -0.034004 0.01609 0.0002276 0.001352
#> lag.PCTAGE65P 0.279208 0.31780 0.0044943 0.037387
#> lag.PCTOWNHOME -0.134012 0.06451 0.0009123 0.005533
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> rho -0.10755 -0.05711 -0.014110 0.05341 0.099104
#> lambda -0.09950 -0.03206 0.037324 0.08249 0.118177
#> (Intercept) -1.60962 -1.28203 -1.096564 -0.93087 -0.597130
#> PEXPOSURE 0.05429 0.16818 0.217623 0.27874 0.368060
#> PCTAGE65P 2.11661 3.00219 3.455553 3.93036 4.829667
#> PCTOWNHOME -0.46367 -0.19124 -0.002169 0.17287 0.544393
#> lag.(Intercept) -0.02153 0.05985 0.109887 0.15841 0.231289
#> lag.PEXPOSURE -0.06423 -0.04610 -0.033598 -0.02331 -0.001144
#> lag.PCTAGE65P -0.29223 0.02822 0.266936 0.50401 0.926973
#> lag.PCTOWNHOME -0.26326 -0.17692 -0.130161 -0.08812 -0.009731
#>
# }