Matrix exponential spatial lag model
lagmess.Rd
The function fits a matrix exponential spatial lag model, using optim
to find the value of alpha
, the spatial coefficient.
Arguments
- formula
a symbolic description of the model to be fit. The details of model specification are given for
lm()
- data
an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.
- listw
a
listw
object created for example byspdep::nb2listw()
- zero.policy
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing
lagmess()
to terminate with an error- na.action
a function (default
options("na.action")
), can also bena.omit
orna.exclude
with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument tonb2listw
may be subsetted.- q
default 10; number of powers of the spatial weights to use
- start
starting value for numerical optimization, should be a small negative number
- control
control parameters passed to
optim
- method
default
BFGS
, method passed tooptim
- verbose
default NULL, use global option value; if TRUE report function values during optimization
- use_expm
default FALSE; if TRUE use
expm::expAtv
instead of a truncated power series of W
Details
The underlying spatial lag model:
$$y = \rho W y + X \beta + \varepsilon$$
where \(\rho\) is the spatial parameter may be fitted by maximum likelihood. In that case, the log likelihood function includes the logarithm of cumbersome Jacobian term \(|I - \rho W|\). If we rewrite the model as:
$$S y = X \beta + \varepsilon$$
we see that in the ML case \(S y = (I - \rho W) y\). If W is row-stochastic, S may be expressed as a linear combination of row-stochastic matrices. By pre-computing the matrix \([y, Wy, W^2y, ..., W^{q-1}y]\), the term \(S y (\alpha)\) can readily be found by numerical optimization using the matrix exponential approach. \(\alpha\) and \(\rho\) are related as \(\rho = 1 - \exp{\alpha}\), conditional on the number of matrix power terms taken q
.
Value
The function returns an object of class Lagmess
with components:
- lmobj
the
lm
object returned after fittingalpha
- alpha
the spatial coefficient
- alphase
the standard error of the spatial coefficient using the numerical Hessian
- rho
the value of
rho
implied byalpha
- bestmess
the object returned by
optim
- q
the number of powers of the spatial weights used
- start
the starting value for numerical optimization used
- na.action
(possibly) named vector of excluded or omitted observations if non-default na.action argument used
- nullLL
the log likelihood of the aspatial model for the same data
References
J. P. LeSage and R. K. Pace (2007) A matrix exponential specification. Journal of Econometrics, 140, 190-214; J. P. LeSage and R. K. Pace (2009) Introduction to Spatial Econometrics. CRC Press, Chapter 9.
Author
Roger Bivand Roger.Bivand@nhh.no and Eric Blankmeyer
Examples
#require(spdep, quietly=TRUE)
data(baltimore, package="spData")
baltimore$AGE <- ifelse(baltimore$AGE < 1, 1, baltimore$AGE)
lw <- spdep::nb2listw(spdep::knn2nb(spdep::knearneigh(cbind(baltimore$X, baltimore$Y), k=7)))
obj1 <- lm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT),
data=baltimore)
spdep::lm.morantest(obj1, lw)
#>
#> Global Moran I for regression residuals
#>
#> data:
#> model: lm(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data =
#> baltimore)
#> weights: lw
#>
#> Moran I statistic standard deviate = 7.4648, p-value = 4.171e-14
#> alternative hypothesis: greater
#> sample estimates:
#> Observed Moran I Expectation Variance
#> 0.245149959 -0.007853660 0.001148722
#>
spdep::lm.LMtests(obj1, lw, test="all")
#> Please update scripts to use lm.RStests in place of lm.LMtests
#>
#> Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
#> dependence
#>
#> data:
#> model: lm(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data =
#> baltimore)
#> test weights: listw
#>
#> RSerr = 48.648, df = 1, p-value = 3.063e-12
#>
#>
#> Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
#> dependence
#>
#> data:
#> model: lm(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data =
#> baltimore)
#> test weights: listw
#>
#> RSlag = 83.091, df = 1, p-value < 2.2e-16
#>
#>
#> Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
#> dependence
#>
#> data:
#> model: lm(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data =
#> baltimore)
#> test weights: listw
#>
#> adjRSerr = 1.2535, df = 1, p-value = 0.2629
#>
#>
#> Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
#> dependence
#>
#> data:
#> model: lm(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data =
#> baltimore)
#> test weights: listw
#>
#> adjRSlag = 35.696, df = 1, p-value = 2.306e-09
#>
#>
#> Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
#> dependence
#>
#> data:
#> model: lm(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data =
#> baltimore)
#> test weights: listw
#>
#> SARMA = 84.344, df = 2, p-value < 2.2e-16
#>
system.time(obj2 <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw))
#> user system elapsed
#> 0.03 0.00 0.03
(x <- summary(obj2))
#> Matrix exponential spatial lag model:
#>
#> Call:
#> lagmess(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT),
#> data = baltimore, listw = lw)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.026722 -0.141191 0.050831 0.223830 1.073114
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.546376 0.214513 7.2088 1.039e-11
#> PATIO 0.258287 0.086891 2.9726 0.003303
#> log(AGE) -0.148174 0.035252 -4.2033 3.912e-05
#> log(SQFT) 0.300966 0.071598 4.2036 3.908e-05
#>
#> Residual standard error: 0.41658 on 207 degrees of freedom
#> Multiple R-squared: 0.22373, Adjusted R-squared: 0.21248
#> F-statistic: 19.887 on 3 and 207 DF, p-value: 2.2881e-11
#>
#> Alpha: -0.64302, standard error: 0.1043
#> z-value: -6.1649, p-value: 7.0511e-10
#> LR test value: 48.296, p-value: 3.6644e-12
#> Implied rho: 0.4742995
#>
coef(x)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.5463761 0.21451319 7.208769 1.038762e-11
#> PATIO 0.2582874 0.08689079 2.972552 3.303312e-03
#> log(AGE) -0.1481738 0.03525174 -4.203305 3.912250e-05
#> log(SQFT) 0.3009659 0.07159771 4.203569 3.908038e-05
has_expm <- require("expm", quietly=TRUE)
#>
#> Attaching package: ‘expm’
#> The following object is masked from ‘package:Matrix’:
#>
#> expm
if (has_expm) {
system.time(
obj2a <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw, use_expm=TRUE)
)
summary(obj2a)
}
#> Matrix exponential spatial lag model:
#> (calculated with expm)
#>
#> Call:
#> lagmess(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT),
#> data = baltimore, listw = lw, use_expm = TRUE)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.026722 -0.141191 0.050831 0.223830 1.073114
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.546376 0.214513 7.2088 1.039e-11
#> PATIO 0.258287 0.086891 2.9726 0.003303
#> log(AGE) -0.148174 0.035252 -4.2033 3.912e-05
#> log(SQFT) 0.300966 0.071598 4.2036 3.908e-05
#>
#> Residual standard error: 0.41658 on 207 degrees of freedom
#> Multiple R-squared: 0.22373, Adjusted R-squared: 0.21248
#> F-statistic: 19.887 on 3 and 207 DF, p-value: 2.2881e-11
#>
#> Alpha: -0.64302, standard error: 0.1043
#> z-value: -6.1649, p-value: 7.0511e-10
#> LR test value: 48.296, p-value: 3.6644e-12
#> Implied rho: 0.4742995
#>
obj3 <- lagsarlm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw)
summary(obj3)
#>
#> Call:lagsarlm(formula = log(PRICE) ~ PATIO + log(AGE) + log(SQFT),
#> data = baltimore, listw = lw)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.969554 -0.147514 0.042581 0.199567 1.076181
#>
#> Type: lag
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 1.255885 0.320679 3.9163 8.991e-05
#> PATIO 0.244225 0.083448 2.9267 0.0034262
#> log(AGE) -0.131947 0.034510 -3.8235 0.0001316
#> log(SQFT) 0.278888 0.070259 3.9694 7.205e-05
#>
#> Rho: 0.55765, LR test value: 52.661, p-value: 3.9635e-13
#> Asymptotic standard error: 0.072749
#> z-value: 7.6653, p-value: 1.7764e-14
#> Wald statistic: 58.757, p-value: 1.7875e-14
#>
#> Log likelihood: -110.4248 for lag model
#> ML residual variance (sigma squared): 0.1589, (sigma: 0.39862)
#> Number of observations: 211
#> Number of parameters estimated: 6
#> AIC: 232.85, (AIC for lm: 283.51)
#> LM test for residual autocorrelation
#> test value: 8.7942, p-value: 0.0030219
#>
# \donttest{
data(boston, package="spData")
lw <- spdep::nb2listw(boston.soi)
gp2 <- lagsarlm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2)
+ AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data=boston.c, lw, method="Matrix")
summary(gp2)
#>
#> Call:lagsarlm(formula = log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
#> I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +
#> log(LSTAT), data = boston.c, listw = lw, method = "Matrix")
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.5262308 -0.0749699 -0.0044237 0.0713409 0.7122121
#>
#> Type: lag
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 2.2796e+00 1.7495e-01 13.0302 < 2.2e-16
#> CRIM -7.1045e-03 9.6236e-04 -7.3824 1.554e-13
#> ZN 3.7985e-04 3.8510e-04 0.9864 0.3239507
#> INDUS 1.2572e-03 1.7986e-03 0.6990 0.4845472
#> CHAS1 7.3677e-03 2.5416e-02 0.2899 0.7719057
#> I(NOX^2) -2.6892e-01 8.8026e-02 -3.0550 0.0022508
#> I(RM^2) 6.7243e-03 1.0039e-03 6.6985 2.106e-11
#> AGE -2.7682e-04 4.0062e-04 -0.6910 0.4895829
#> log(DIS) -1.5830e-01 2.5554e-02 -6.1947 5.841e-10
#> log(RAD) 7.0689e-02 1.4616e-02 4.8363 1.323e-06
#> TAX -3.6569e-04 9.3744e-05 -3.9009 9.582e-05
#> PTRATIO -1.2011e-02 3.9599e-03 -3.0330 0.0024211
#> B 2.8432e-04 7.9402e-05 3.5807 0.0003427
#> log(LSTAT) -2.3216e-01 2.0425e-02 -11.3663 < 2.2e-16
#>
#> Rho: 0.48537, LR test value: 214.06, p-value: < 2.22e-16
#> Asymptotic standard error: 0.029426
#> z-value: 16.494, p-value: < 2.22e-16
#> Wald statistic: 272.06, p-value: < 2.22e-16
#>
#> Log likelihood: 264.0089 for lag model
#> ML residual variance (sigma squared): 0.019276, (sigma: 0.13884)
#> Number of observations: 506
#> Number of parameters estimated: 16
#> AIC: -496.02, (AIC for lm: -283.96)
#> LM test for residual autocorrelation
#> test value: 10.74, p-value: 0.0010486
#>
gp2a <- lagmess(CMEDV ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2)
+ AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
data=boston.c, lw)
summary(gp2a)
#> Matrix exponential spatial lag model:
#>
#> Call:
#> lagmess(formula = CMEDV ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) +
#> I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B +
#> log(LSTAT), data = boston.c, listw = lw)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -17.03755 -2.05386 -0.30295 1.67710 21.82120
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 35.3206850 3.0128759 11.7232 < 2.2e-16
#> CRIM -0.0986056 0.0242819 -4.0609 5.688e-05
#> ZN 0.0198500 0.0098638 2.0124 0.0447222
#> INDUS 0.0071211 0.0461104 0.1544 0.8773301
#> CHAS1 0.8158059 0.6477224 1.2595 0.2084473
#> I(NOX^2) -9.2592911 2.2072427 -4.1950 3.238e-05
#> I(RM^2) 0.2434745 0.0256001 9.5107 < 2.2e-16
#> AGE -0.0040683 0.0102667 -0.3963 0.6920816
#> log(DIS) -5.3974116 0.6514323 -8.2855 1.125e-15
#> log(RAD) 1.7142905 0.3732772 4.5925 5.569e-06
#> TAX -0.0087053 0.0023933 -3.6373 0.0003046
#> PTRATIO -0.4118524 0.0977997 -4.2112 3.021e-05
#> B 0.0056141 0.0020116 2.7908 0.0054614
#> log(LSTAT) -6.1484203 0.4878957 -12.6019 < 2.2e-16
#>
#> Residual standard error: 3.5594 on 492 degrees of freedom
#> Multiple R-squared: 0.76221, Adjusted R-squared: 0.75593
#> F-statistic: 121.31 on 13 and 492 DF, p-value: < 2.22e-16
#>
#> Alpha: -0.41361, standard error: 0.038521
#> z-value: -10.737, p-value: < 2.22e-16
#> LR test value: 121.4, p-value: < 2.22e-16
#> Implied rho: 0.3387434
#>
# }