Calculate the local univariate join count
local_joincount_uni.Rd
The univariate local join count statistic is used to identify clusters of rarely occurring binary variables. The binary variable of interest should occur less than half of the time.
Usage
local_joincount_uni(
fx,
chosen,
listw,
alternative = "two.sided",
nsim = 199,
iseed = NULL,
no_repeat_in_row=FALSE
)
Arguments
- fx
a binary variable either numeric or logical
- chosen
a scalar character containing the level of
fx
that should be considered the observed value (1).- listw
a listw object containing binary weights created, for example, with
nbwlistw(nb, style = "B")
- alternative
default
"greater"
. One of"less"
or"greater"
.- nsim
the number of conditional permutation simulations
- iseed
default NULL, used to set the seed; the output will only be reproducible if the count of CPU cores across which computation is distributed is the same
- no_repeat_in_row
default
FALSE
, ifTRUE
, sample conditionally in each row without replacements to avoid duplicate values, https://github.com/r-spatial/spdep/issues/124
Details
The local join count statistic requires a binary weights list which can be generated with nb2listw(nb, style = "B")
. Additionally, ensure that the binary variable of interest is rarely occurring in no more than half of observations.
P-values are estimated using a conditional permutation approach. This creates a reference distribution from which the observed statistic is compared. For more see Geoda Glossary.
References
Anselin, L., & Li, X. (2019). Operational Local Join Count Statistics for Cluster Detection. Journal of geographical systems, 21(2), 189–210. doi:10.1007/s10109-019-00299-x
Author
Josiah Parry josiah.parry@gmail.com
Examples
data(oldcol)
fx <- as.factor(ifelse(COL.OLD$CRIME < 35, "low-crime", "high-crime"))
listw <- nb2listw(COL.nb, style = "B")
set.seed(1)
(res <- local_joincount_uni(fx, chosen = "high-crime", listw))
#> BB Pr(z != E(BBi))
#> 1 0 NA
#> 2 0 NA
#> 3 4 0.50
#> 4 0 NA
#> 5 0 NA
#> 6 0 NA
#> 7 4 0.89
#> 8 0 NA
#> 9 5 0.11
#> 10 0 NA
#> 11 0 NA
#> 12 0 NA
#> 13 0 NA
#> 14 0 NA
#> 15 0 NA
#> 16 0 NA
#> 17 0 NA
#> 18 0 NA
#> 19 0 NA
#> 20 3 0.55
#> 21 2 0.84
#> 22 3 0.30
#> 23 4 0.61
#> 24 5 0.12
#> 25 0 NA
#> 26 0 NA
#> 27 0 NA
#> 28 0 NA
#> 29 3 0.98
#> 30 5 0.09
#> 31 8 0.01
#> 32 7 0.02
#> 33 6 0.02
#> 34 5 0.04
#> 35 7 0.03
#> 36 8 0.02
#> 37 6 0.05
#> 38 5 0.04
#> 39 3 0.44
#> 40 5 0.14
#> 41 3 0.13
#> 42 5 0.05
#> 43 2 0.63
#> 44 0 NA
#> 45 0 NA
#> 46 0 NA
#> 47 0 NA
#> 48 0 NA
#> 49 0 NA