Package index
-
oldcol
- Columbus OH spatial analysis data set - old numbering
-
EBImoran.mc()
- Permutation test for empirical Bayes index
-
EBest()
- Global Empirical Bayes estimator
-
EBlocal()
- Local Empirical Bayes estimator
-
LOSH()
- Local spatial heteroscedasticity
-
LOSH.cs()
- Chi-square based test for local spatial heteroscedasticity
-
LOSH.mc()
- Bootstrapping-based test for local spatial heteroscedasticity
-
SD.RStests()
- Rao's score and adjusted Rao's score tests of linear hypotheses for spatial Durbin and spatial Durbin error models
-
aggregate(<nb>)
- Aggregate a spatial neighbours object
-
airdist()
- Measure distance from plot
-
autocov_dist()
- Distance-weighted autocovariate
-
bhicv
- Data set with 4 life condition indices of Belo Horizonte region
-
card()
- Cardinalities for neighbours lists
-
choynowski()
- Choynowski probability map values
-
columbus
- Columbus OH spatial analysis data set
-
n.comp.nb()
- Depth First Search on Neighbor Lists
-
diffnb()
- Differences between neighbours lists
-
dnearneigh()
- Neighbourhood contiguity by distance
-
droplinks()
addlinks1()
- Drop and add links in a neighbours list
-
edit(<nb>)
- Interactive editing of neighbours lists
-
eire
- Eire data sets
-
geary()
- Compute Geary's C
-
geary.mc()
- Permutation test for Geary's C statistic
-
geary.test()
- Geary's C test for spatial autocorrelation
-
globalG.test()
- Global G test for spatial autocorrelation
-
gabrielneigh()
relativeneigh()
soi.graph()
graph2nb()
plot(<Gabriel>)
plot(<relative>)
- Graph based spatial weights
-
grid2nb()
- Construct neighbours for a GridTopology
-
hotspot()
- Cluster Classifications for Local Indicators of Spatial Association and Local Indicators for Categorical Data
-
include.self()
remove.self()
- Include self in neighbours list
-
joincount.mc()
- Permutation test for same colour join count statistics
-
joincount.multi()
print(<jcmulti>)
- BB, BW and Jtot join count statistic for k-coloured factors
-
joincount.test()
print(<jclist>)
- BB join count statistic for k-coloured factors
-
knearneigh()
- K nearest neighbours for spatial weights
-
knn2nb()
- Neighbours list from knn object
-
lag(<listw>)
- Spatial lag of a numeric vector
-
lee()
- Compute Lee's statistic
-
lee.mc()
- Permutation test for Lee's L statistic
-
lee.test()
- Lee's L test for spatial autocorrelation
-
licd_multi()
- Local Indicators for Categorical Data
-
listw2sn()
sn2listw()
- Spatial neighbour sparse representation
-
lm.RStests()
lm.LMtests()
print(<RStestlist>)
summary(<RStestlist>)
print(<RStestlist.summary>)
- Rao's score (a.k.a Lagrange Multiplier) diagnostics for spatial dependence in linear models
-
lm.morantest()
- Moran's I test for residual spatial autocorrelation
-
lm.morantest.exact()
print(<moranex>)
- Exact global Moran's I test
-
lm.morantest.sad()
print(<moransad>)
summary(<moransad>)
print(<summary.moransad>)
- Saddlepoint approximation of global Moran's I test
-
localC()
localC_perm()
- Compute Local Geary statistic
-
localG()
localG_perm()
- G and Gstar local spatial statistics
-
localGS()
- A local hotspot statistic for analysing multiscale datasets
-
local_joincount_bv()
- Calculate the local bivariate join count
-
local_joincount_uni()
- Calculate the local univariate join count
-
localmoran()
localmoran_perm()
- Local Moran's I statistic
-
localmoran.exact()
localmoran.exact.alt()
print(<localmoranex>)
as.data.frame(<localmoranex>)
- Exact local Moran's Ii tests
-
localmoran.sad()
print(<localmoransad>)
summary(<localmoransad>)
print(<summary.localmoransad>)
listw2star()
- Saddlepoint approximation of local Moran's Ii tests
-
localmoran_bv()
- Compute the Local Bivariate Moran's I Statistic
-
mat2listw()
- Convert a square spatial weights matrix to a weights list object
-
moran()
- Compute Moran's I
-
moran.mc()
- Permutation test for Moran's I statistic
-
moran.plot()
- Moran scatterplot
-
moran.test()
- Moran's I test for spatial autocorrelation
-
moran_bv()
- Compute the Global Bivariate Moran's I
-
mstree()
- Find the minimal spanning tree
-
nb2INLA()
- Output spatial neighbours for INLA
-
nb2WB()
listw2WB()
- Output spatial weights for WinBUGS
-
nb2blocknb()
- Block up neighbour list for location-less observations
-
nb2lines()
listw2lines()
df2sn()
- Use vector files for import and export of weights
-
nb2listw()
listw2U()
- Spatial weights for neighbours lists
-
nb2listwdist()
- Distance-based spatial weights for neighbours lists
-
nb2mat()
listw2mat()
- Spatial weights matrices for neighbours lists
-
nbdists()
- Spatial link distance measures
-
nblag()
nblag_cumul()
- Higher order neighbours lists
-
intersect.nb()
union.nb()
setdiff.nb()
complement.nb()
- Set operations on neighborhood objects
-
p.adjustSP()
- Adjust local association measures' p-values
-
plot(<mst>)
- Plot the Minimum Spanning Tree
-
plot(<nb>)
plot(<listw>)
- Plot a neighbours list
-
plot(<skater>)
- Plot the object of skater class
-
poly2nb()
- Construct neighbours list from polygon list
-
probmap()
- Probability mapping for rates
-
prunecost()
- Compute cost of prune each edge
-
prunemst()
- Prune a Minimun Spanning Tree
-
read.gal()
read.geoda()
- Read a GAL lattice file into a neighbours list
-
read.gwt2nb()
write.sn2gwt()
read.dat2listw()
write.sn2dat()
read.swmdbf2listw()
read_swm_dbf()
write.swmdbf()
write_swm_dbf()
write.sn2DBF()
- Read and write spatial neighbour files
-
Rotation()
- Rotate a set of point by a certain angle
-
set.mcOption()
get.mcOption()
set.coresOption()
get.coresOption()
set.ClusterOption()
get.ClusterOption()
- Options for parallel support
-
set.spChkOption()
get.spChkOption()
chkIDs()
spNamedVec()
set.VerboseOption()
get.VerboseOption()
set.ZeroPolicyOption()
get.ZeroPolicyOption()
set.SubgraphOption()
get.SubgraphOption()
set.SubgraphCeiling()
get.SubgraphCeiling()
set.NoNeighbourOption()
get.NoNeighbourOption()
set.listw_is_CsparseMatrix_Option()
get.listw_is_CsparseMatrix_Option()
- Control checking of spatial object IDs
-
skater()
- Spatial 'K'luster Analysis by Tree Edge Removal
-
sp.correlogram()
plot(<spcor>)
print(<spcor>)
- Spatial correlogram
-
sp.mantel.mc()
plot(<mc.sim>)
- Mantel-Hubert spatial general cross product statistic
-
aple.plot()
localAple()
aple.mc()
aple()
lextrB()
lextrW()
lextrS()
griffith_sone()
subgraph_eigenw()
mom_calc()
mom_calc_int2()
stsls()
impacts(<stsls>)
GMerrorsar()
summary(<gmsar>)
gstsls()
impacts(<gmsar>)
Hausman.test(<gmsar>)
lagmess()
ME()
SpatialFiltering()
LR.sarlm()
logLik(<sarlm>)
LR1.sarlm()
Wald1.sarlm()
Hausman.test(<sarlm>)
as.spam.listw()
as_dgRMatrix_listw()
as_dsTMatrix_listw()
as_dsCMatrix_I()
as_dsCMatrix_IrW()
Jacobian_W()
powerWeights()
plot(<lagImpact>)
print(<lagImpact>)
summary(<lagImpact>)
HPDinterval(<lagImpact>)
intImpacts()
can.be.simmed()
eigenw()
similar.listw()
do_ldet()
jacobianSetup()
cheb_setup()
mcdet_setup()
eigen_setup()
eigen_pre_setup()
spam_setup()
spam_update_setup()
Matrix_setup()
Matrix_J_setup()
LU_setup()
LU_prepermutate_setup()
moments_setup()
SE_classic_setup()
SE_whichMin_setup()
SE_interp_setup()
MCMCsamp()
spautolm()
summary(<spautolm>)
spBreg_sac()
impacts(<MCMC_sar_g>)
impacts(<MCMC_sem_g>)
impacts(<MCMC_sac_g>)
spBreg_err()
spBreg_lag()
predict(<SLX>)
lmSLX()
impacts(<SLX>)
create_WX()
anova(<sarlm>)
bptest.sarlm()
errorsarlm()
impacts(<sarlm>)
lagsarlm()
predict(<sarlm>)
print(<sarlm.pred>)
as.data.frame(<sarlm.pred>)
residuals(<sarlm>)
deviance(<sarlm>)
coef(<sarlm>)
vcov(<sarlm>)
fitted(<sarlm>)
sacsarlm()
summary(<sarlm>)
print(<sarlm>)
print(<summary.sarlm>)
trW()
- Defunct Functions in Package spdep
-
spdep()
- Return package version number
-
spweights.constants()
Szero()
- Provides constants for spatial weights matrices
-
ssw()
- Compute the sum of dissimilarity
-
subset(<listw>)
- Subset a spatial weights list
-
subset(<nb>)
- Subset a neighbours list
-
summary(<nb>)
print(<nb>)
summary(<listw>)
print(<listw>)
- Print and summary function for neighbours and weights lists
-
is.symmetric.nb()
sym.attr.nb()
make.sym.nb()
old.make.sym.nb()
is.symmetric.glist()
- Test a neighbours list for symmetry
-
tolerance.nb()
- Function to construct edges based on a tolerance angle and a maximum distance
-
tri2nb()
- Neighbours list from tri object
-
write.nb.gal()
- Write a neighbours list as a GAL lattice file