Package index
-
oldcol - Columbus OH spatial analysis data set - old numbering
-
EBImoran.mc() - Permutation test for empirical Bayes index
-
EBest() - Global Empirical Bayes estimator
-
EBlocal() - Local Empirical Bayes estimator
-
LOSH() - Local spatial heteroscedasticity
-
LOSH.cs() - Chi-square based test for local spatial heteroscedasticity
-
LOSH.mc() - Bootstrapping-based test for local spatial heteroscedasticity
-
SD.RStests()have_factor_preds_mf()warn_factor_preds() - Rao's score and adjusted Rao's score tests of linear hypotheses for spatial Durbin and spatial Durbin error models
-
aggregate(<nb>) - Aggregate a spatial neighbours object
-
airdist() - Measure distance from plot
-
autocov_dist() - Distance-weighted autocovariate
-
bhicv - Data set with 4 life condition indices of Belo Horizonte region
-
card() - Cardinalities for neighbours lists
-
choynowski() - Choynowski probability map values
-
columbus - Columbus OH spatial analysis data set
-
n.comp.nb() - Depth First Search on Neighbor Lists
-
diffnb() - Differences between neighbours lists
-
dnearneigh() - Neighbourhood contiguity by distance
-
droplinks()addlinks1() - Drop and add links in a neighbours list
-
edit(<nb>) - Interactive editing of neighbours lists
-
eire - Eire data sets
-
geary() - Compute Geary's C
-
geary.mc() - Permutation test for Geary's C statistic
-
geary.test() - Geary's C test for spatial autocorrelation
-
globalG.test() - Global G test for spatial autocorrelation
-
gabrielneigh()relativeneigh()soi.graph()graph2nb()plot(<Gabriel>)plot(<relative>) - Graph based spatial weights
-
grid2nb() - Construct neighbours for a GridTopology
-
hotspot() - Cluster Classifications for Local Indicators of Spatial Association and Local Indicators for Categorical Data
-
include.self()remove.self() - Include self in neighbours list
-
joincount.mc() - Permutation test for same colour join count statistics
-
joincount.multi()print(<jcmulti>) - BB, BW and Jtot join count statistic for k-coloured factors
-
joincount.test()print(<jclist>) - BB join count statistic for k-coloured factors
-
knearneigh() - K nearest neighbours for spatial weights
-
knn2nb() - Neighbours list from knn object
-
lag(<listw>) - Spatial lag of a numeric vector
-
lee() - Compute Lee's statistic
-
lee.mc() - Permutation test for Lee's L statistic
-
lee.test() - Lee's L test for spatial autocorrelation
-
licd_multi() - Local Indicators for Categorical Data
-
listw2sn()sn2listw() - Spatial neighbour sparse representation
-
lm.RStests()lm.LMtests()print(<RStestlist>)summary(<RStestlist>)print(<RStestlist.summary>) - Rao's score (a.k.a Lagrange Multiplier) diagnostics for spatial dependence in linear models
-
lm.morantest() - Moran's I test for residual spatial autocorrelation
-
lm.morantest.exact()print(<moranex>) - Exact global Moran's I test
-
lm.morantest.sad()print(<moransad>)summary(<moransad>)print(<summary.moransad>) - Saddlepoint approximation of global Moran's I test
-
localC()localC_perm() - Compute Local Geary statistic
-
localG()localG_perm() - G and Gstar local spatial statistics
-
localGS() - A local hotspot statistic for analysing multiscale datasets
-
local_joincount_bv() - Calculate the local bivariate join count
-
local_joincount_uni() - Calculate the local univariate join count
-
localmoran()localmoran_perm() - Local Moran's I statistic
-
localmoran.exact()localmoran.exact.alt()print(<localmoranex>)as.data.frame(<localmoranex>) - Exact local Moran's Ii tests
-
localmoran.sad()print(<localmoransad>)summary(<localmoransad>)print(<summary.localmoransad>)listw2star() - Saddlepoint approximation of local Moran's Ii tests
-
localmoran_bv() - Compute the Local Bivariate Moran's I Statistic
-
mat2listw() - Convert a square spatial weights matrix to a weights list object
-
moran() - Compute Moran's I
-
moran.mc() - Permutation test for Moran's I statistic
-
moran.plot() - Moran scatterplot
-
moran.test() - Moran's I test for spatial autocorrelation
-
moran_bv() - Compute the Global Bivariate Moran's I
-
mstree() - Find the minimal spanning tree
-
nb2INLA() - Output spatial neighbours for INLA
-
nb2WB()listw2WB() - Output spatial weights for WinBUGS
-
nb2blocknb() - Block up neighbour list for location-less observations
-
nb2lines()listw2lines()df2sn() - Use vector files for import and export of weights
-
nb2listw()listw2U() - Spatial weights for neighbours lists
-
nb2listwdist() - Distance-based spatial weights for neighbours lists
-
nb2mat()listw2mat() - Spatial weights matrices for neighbours lists
-
nbdists() - Spatial link distance measures
-
nblag()nblag_cumul() - Higher order neighbours lists
-
intersect.nb()union.nb()setdiff.nb()complement.nb() - Set operations on neighborhood objects
-
p.adjustSP() - Adjust local association measures' p-values
-
plot(<mst>) - Plot the Minimum Spanning Tree
-
plot(<nb>)plot(<listw>) - Plot a neighbours list
-
plot(<skater>) - Plot the object of skater class
-
poly2nb() - Construct neighbours list from polygon list
-
probmap() - Probability mapping for rates
-
prunecost() - Compute cost of prune each edge
-
prunemst() - Prune a Minimun Spanning Tree
-
read.gal()read.geoda() - Read a GAL lattice file into a neighbours list
-
read.gwt2nb()write.sn2gwt()read.dat2listw()write.sn2dat()read.swmdbf2listw()read_swm_dbf()write.swmdbf()write_swm_dbf()write.sn2DBF() - Read and write spatial neighbour files
-
Rotation() - Rotate a set of point by a certain angle
-
set.mcOption()get.mcOption()set.coresOption()get.coresOption()set.ClusterOption()get.ClusterOption() - Options for parallel support
-
set.spChkOption()get.spChkOption()chkIDs()spNamedVec()set.VerboseOption()get.VerboseOption()set.ZeroPolicyOption()get.ZeroPolicyOption()set.SubgraphOption()get.SubgraphOption()set.SubgraphCeiling()get.SubgraphCeiling()set.NoNeighbourOption()get.NoNeighbourOption()set.listw_is_CsparseMatrix_Option()get.listw_is_CsparseMatrix_Option() - Control checking of spatial object IDs
-
skater() - Spatial 'K'luster Analysis by Tree Edge Removal
-
sp.correlogram()plot(<spcor>)print(<spcor>) - Spatial correlogram
-
sp.mantel.mc()plot(<mc.sim>) - Mantel-Hubert spatial general cross product statistic
-
spatialdelta()summary(<spatialdelta>)print(<summary.spatialdelta>)linearised_diffusive_weights()metropolis_hastings_weights()iterative_proportional_fitting_weights()graph_distance_weights()as.matrix(<adjusted_spatial_weights>)plot_spatialcoords()plot_moran()plot_spatialscree()factorial_coordinates()plot_factorialcoords()plot_factorialscree()localdelta()cornish_fisher() - Weighted Multivariate Spatial Autocorrelation Measures
-
aple.plot()localAple()aple.mc()aple()lextrB()lextrW()lextrS()griffith_sone()subgraph_eigenw()mom_calc()mom_calc_int2()stsls()impacts(<stsls>)GMerrorsar()summary(<gmsar>)gstsls()impacts(<gmsar>)Hausman.test(<gmsar>)lagmess()ME()SpatialFiltering()LR.sarlm()logLik(<sarlm>)LR1.sarlm()Wald1.sarlm()Hausman.test(<sarlm>)as.spam.listw()as_dgRMatrix_listw()as_dsTMatrix_listw()as_dsCMatrix_I()as_dsCMatrix_IrW()Jacobian_W()powerWeights()plot(<lagImpact>)print(<lagImpact>)summary(<lagImpact>)HPDinterval(<lagImpact>)intImpacts()can.be.simmed()eigenw()similar.listw()do_ldet()jacobianSetup()cheb_setup()mcdet_setup()eigen_setup()eigen_pre_setup()spam_setup()spam_update_setup()Matrix_setup()Matrix_J_setup()LU_setup()LU_prepermutate_setup()moments_setup()SE_classic_setup()SE_whichMin_setup()SE_interp_setup()MCMCsamp()spautolm()summary(<spautolm>)spBreg_sac()impacts(<MCMC_sar_g>)impacts(<MCMC_sem_g>)impacts(<MCMC_sac_g>)spBreg_err()spBreg_lag()predict(<SLX>)lmSLX()impacts(<SLX>)create_WX()anova(<sarlm>)bptest.sarlm()errorsarlm()impacts(<sarlm>)lagsarlm()predict(<sarlm>)print(<sarlm.pred>)as.data.frame(<sarlm.pred>)residuals(<sarlm>)deviance(<sarlm>)coef(<sarlm>)vcov(<sarlm>)fitted(<sarlm>)sacsarlm()summary(<sarlm>)print(<sarlm>)print(<summary.sarlm>)trW() - Defunct Functions in Package spdep
-
spdep() - Return package version number
-
spweights.constants()Szero() - Provides constants for spatial weights matrices
-
ssw() - Compute the sum of dissimilarity
-
subset(<listw>) - Subset a spatial weights list
-
subset(<nb>) - Subset a neighbours list
-
summary(<nb>)print(<nb>)summary(<listw>)print(<listw>) - Print and summary function for neighbours and weights lists
-
is.symmetric.nb()sym.attr.nb()make.sym.nb()old.make.sym.nb()is.symmetric.glist() - Test a neighbours list for symmetry
-
tolerance.nb() - Function to construct edges based on a tolerance angle and a maximum distance
-
tri2nb() - Neighbours list from tri object
-
write.nb.gal() - Write a neighbours list as a GAL lattice file