Cluster Classifications for Local Indicators of Spatial Association and Local Indicators for Categorical Data
hotspotmap.Rd
Used to return a factor showing so-called cluster classification for local indicators of spatial association for local Moran's I, local Geary's C (and its multivariate variant) and local Getis-Ord G. This factor vector can be added to a spatial object for mapping. When obj
is of class licd
, a list of up to six factors for measures of local composition (analytical and permutation), local configuration (analytical and permutation), and combined measures, both the interaction of composition and configuration, and a simplified recoding of these.
Usage
hotspot(obj, ...)
# Default S3 method
hotspot(obj, ...)
# S3 method for class 'localmoran'
hotspot(obj, Prname, cutoff=0.005, quadrant.type="mean",
p.adjust="fdr", droplevels=TRUE, ...)
# S3 method for class 'summary.localmoransad'
hotspot(obj, Prname, cutoff=0.005,
quadrant.type="mean", p.adjust="fdr", droplevels=TRUE, ...)
# S3 method for class 'data.frame.localmoranex'
hotspot(obj, Prname, cutoff=0.005,
quadrant.type="mean", p.adjust="fdr", droplevels=TRUE, ...)
# S3 method for class 'localG'
hotspot(obj, Prname, cutoff=0.005, p.adjust="fdr", droplevels=TRUE, ...)
# S3 method for class 'localC'
hotspot(obj, Prname, cutoff=0.005, p.adjust="fdr", droplevels=TRUE, ...)
# S3 method for class 'licd'
hotspot(obj, type = "both", cutoff = 0.05, p.adjust = "none",
droplevels = TRUE, control = list(), ...)
Arguments
- obj
An object of class
localmoran
,localC
orlocalG
- Prname
A character string, the name of the column containing the probability values to be classified by cluster type if found “interesting”
- cutoff
Default 0.005, the probability value cutoff larger than which the observation is not found “interesting”
- p.adjust
Default
"fdr"
, thep.adjust()
method used, one ofc("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")
- droplevels
Default
TRUE
, should empty levels of the input cluster factor be dropped- quadrant.type
Default
"mean"
, for"localmoran"
objects only, can bec("mean", "median", "pysal")
to partition the Moran scatterplot;"mean"
partitions on the means of the variable and its spatial lag,"median"
on medians of the variable and its spatial lag,"pysal"
at zero for the centred variable and its spatial lag- type
When
obj
is of classlicd
, defaultboth
, may also becomp
for local composition orconfig
for local configuration- control
When
obj
is of classlicd
, defaultbinomial_sidak
2,binomial_overlap
TRUE,jcm_sidak
3.binomial_overlap
may be set FALSE to avoid the Binomial probability values summing to more than unity - the tests in Boots (2003, p. 141) do overlap (>=
and<=
), and the Šidák exponents may be set to 1 to prevent by-observation correction for 2 Binomial and 3 Normal probability values per observation- ...
other arguments passed to methods.
Value
A factor showing so-called cluster classification for local indicators of spatial association. When obj
is of class licd
, a list of up to six factors for measures of local composition (analytical and permutation), local configuration (analytical and permutation), and combined measures, both the interaction of composition and configuration, and a simplified recoding of these.
Examples
orig <- spData::africa.rook.nb
listw <- nb2listw(orig)
x <- spData::afcon$totcon
set.seed(1)
C <- localC_perm(x, listw)
Ch <- hotspot(C, Prname="Pr(z != E(Ci)) Sim", cutoff=0.05, p.adjust="none")
table(addNA(Ch))
#>
#> High-High Low-Low <NA>
#> 4 1 37
set.seed(1)
I <- localmoran_perm(x, listw)
Ih <- hotspot(I, Prname="Pr(z != E(Ii)) Sim", cutoff=0.05, p.adjust="none")
table(addNA(Ih))
#>
#> High-High <NA>
#> 6 36
Is <- summary(localmoran.sad(lm(x ~ 1), nb=orig))
Ish <- hotspot(Is, Prname="Pr. (Sad)", cutoff=0.05, p.adjust="none")
table(addNA(Ish))
#>
#> High-High <NA>
#> 5 37
Ie <- as.data.frame(localmoran.exact(lm(x ~ 1), nb=orig))
Ieh <- hotspot(Ie, Prname="Pr. (exact)", cutoff=0.05, p.adjust="none")
table(addNA(Ieh))
#>
#> High-High <NA>
#> 5 37
set.seed(1)
G <- localG_perm(x, listw)
Gh <- hotspot(G, Prname="Pr(z != E(Gi)) Sim", cutoff=0.05, p.adjust="none")
table(addNA(Gh))
#>
#> High <NA>
#> 6 36