The local spatial statistic G is calculated for each zone based on the spatial weights object used. The value returned is a Z-value, and may be used as a diagnostic tool. High positive values indicate the posibility of a local cluster of high values of the variable being analysed, very low relative values a similar cluster of low values. For inference, a Bonferroni-type test is suggested in the references, where tables of critical values may be found (see also details below).

localG(x, listw, zero.policy=NULL, spChk=NULL, return_internals=FALSE, GeoDa=FALSE,
 alternative = "two.sided")
localG_perm(x, listw, nsim=499, zero.policy=NULL, spChk=NULL, return_internals=TRUE,
 alternative = "two.sided", iseed=NULL)



a numeric vector the same length as the neighbours list in listw


a listw object created for example by nb2listw


default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA


should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()


default FALSE but TRUE for permutation version, if TRUE, return internal values of G, EI and VG as as attribute matrix


default FALSE, if TRUE, drop x values for no-neighbour and self-neighbour only observations from all summations


default 499, number of conditonal permutation simulations


a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".


default NULL, used to set the seed for possible parallel RNGs


If the neighbours member of listw has a "self.included" attribute set to TRUE, the Gstar variant, including the self-weight \(w_{ii} > 0\), is calculated and returned. The returned vector will have a "gstari" attribute set to TRUE. Self-weights can be included by using the include.self function before converting the neighbour list to a spatial weights list with nb2listw as shown below in the example.

The critical values of the statistic under assumptions given in the references for the 95th percentile are for n=1: 1.645, n=50: 3.083, n=100: 3.289, n=1000: 3.886.


A vector of G or Gstar values, with attributes "gstari" set to TRUE or FALSE, "call" set to the function call, and class "localG".


Conditional permutations added for comparative purposes; permutations are over the whole data vector omitting the observation itself.


Ord, J. K. and Getis, A. 1995 Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27, 286--306; Getis, A. and Ord, J. K. 1996 Local spatial statistics: an overview. In P. Longley and M. Batty (eds) Spatial analysis: modelling in a GIS environment (Cambridge: Geoinformation International), 261--277; Bivand RS, Wong DWS 2018 Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716--748 doi: 10.1007/s11749-018-0599-x


Roger Bivand


data(getisord, package="spData")
# spData 0.3.2 changes x, y, xyz object names to go_x, go_y, go_xyz to
# avoid putting these objects into the global environment via lazy loading
if (exists("go_xyz") && packageVersion("spData") >= "0.3.2") {
  xyz <- go_xyz
  x <- go_x
  y <- go_y
xycoords <- cbind(xyz$x, xyz$y)
nb30 <- dnearneigh(xycoords, 0, 30)
G30 <- localG(xyz$val, nb2listw(nb30, style="B"))
#> [1] 1.221979
G30_sim <- localG_perm(xyz$val, nb2listw(nb30, style="B"))
#> [1] 1.13091
nb60 <- dnearneigh(xycoords, 0, 60)
G60 <- localG(xyz$val, nb2listw(nb60, style="B"))
#> [1] 1.748098
nb90 <- dnearneigh(xycoords, 0, 90)
G90 <- localG(xyz$val, nb2listw(nb90, style="B"))
#> [1] 1.986135
nb120 <- dnearneigh(xycoords, 0, 120)
G120 <- localG(xyz$val, nb2listw(nb120, style="B"))
#> [1] 1.893374
nb150 <- dnearneigh(xycoords, 0, 150)
G150 <- localG(xyz$val, nb2listw(nb150, style="B"))
#> [1] 1.237454
brks <- seq(-5,5,1)
cm.col <- cm.colors(length(brks)-1)
image(x, y, t(matrix(G30, nrow=16, ncol=16, byrow=TRUE)),
  breaks=brks, col=cm.col, asp=1)
text(xyz$x, xyz$y, round(G30, digits=1), cex=0.7)
polygon(c(195,225,225,195), c(195,195,225,225), lwd=2)
title(main=expression(paste("Values of the ", G[i], " statistic")))

G30s <- localG(xyz$val, nb2listw(include.self(nb30),
cat("value according to Getis and Ord's eq. 14.2, p. 263 (1996)\n")
#> value according to Getis and Ord's eq. 14.2, p. 263 (1996)
#> [1] 1.45078
cat(paste("value given by Getis and Ord (1996), p. 267",
  "(division by n-1 rather than n \n in variance)\n"))
#> value given by Getis and Ord (1996), p. 267 (division by n-1 rather than n 
#>  in variance)
G30s[length(xyz$val)-136] *
  (sqrt(sum(scale(xyz$val, scale=FALSE)^2)/length(xyz$val)) /
#> [1] 1.447943
image(x, y, t(matrix(G30s, nrow=16, ncol=16, byrow=TRUE)),
  breaks=brks, col=cm.col, asp=1)
text(xyz$x, xyz$y, round(G30s, digits=1), cex=0.7)
polygon(c(195,225,225,195), c(195,195,225,225), lwd=2)
title(main=expression(paste("Values of the ", G[i]^"*", " statistic")))