Compute Lee's statistic
lee.Rd
A simple function to compute Lee's L statistic for bivariate spatial data; $$L(x,y) = \frac{n}{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij})^2} \frac{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})) ((\sum_{j=1}^{n}w_{ij}(y_j-\bar{y}))}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}} $$
Usage
lee(x, y, listw, n, S2, zero.policy=attr(listw, "zero.policy"), NAOK=FALSE)
Arguments
- x
a numeric vector the same length as the neighbours list in listw
- y
a numeric vector the same length as the neighbours list in listw
- listw
a
listw
object created for example bynb2listw
- n
number of zones
- S2
Sum of squared sum of weights by rows.
- zero.policy
default
attr(listw, "zero.policy")
as set whenlistw
was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA- NAOK
if 'TRUE' then any 'NA' or 'NaN' or 'Inf' values in x are passed on to the foreign function. If 'FALSE', the presence of 'NA' or 'NaN' or 'Inf' values is regarded as an error.
References
Lee (2001). Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I. J Geograph Syst 3: 369-385
Author
Roger Bivand and Virgiio Gómez-Rubio Virgilio.Gomez@uclm.es