Permutation test for Lee's L statistic
lee.mc.Rd
A permutation test for Lee's L statistic calculated by using nsim random permutations of x and y for the given spatial weighting scheme, to establish the rank of the observed statistic in relation to the nsim simulated values.
Usage
lee.mc(x, y, listw, nsim, zero.policy=attr(listw, "zero.policy"), alternative="greater",
na.action=na.fail, spChk=NULL, return_boot=FALSE)
Arguments
- x
a numeric vector the same length as the neighbours list in listw
- y
a numeric vector the same length as the neighbours list in listw
- listw
a
listw
object created for example bynb2listw
- nsim
number of permutations
- zero.policy
default
attr(listw, "zero.policy")
as set whenlistw
was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA- alternative
a character string specifying the alternative hypothesis, must be one of "greater" (default), "two.sided", or "less".
- na.action
a function (default
na.fail
), can also bena.omit
orna.exclude
- in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument tonb2listw
may be subsetted.na.pass
is not permitted because it is meaningless in a permutation test.- spChk
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use
get.spChkOption()
- return_boot
return an object of class
boot
from the equivalent permutation bootstrap rather than an object of classhtest
Value
A list with class htest
and mc.sim
containing the following components:
- statistic
the value of the observed Lee's L.
- parameter
the rank of the observed Lee's L.
- p.value
the pseudo p-value of the test.
- alternative
a character string describing the alternative hypothesis.
- method
a character string giving the method used.
- data.name
a character string giving the name(s) of the data, and the number of simulations.
- res
nsim simulated values of statistic, final value is observed statistic
References
Lee (2001). Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I. J Geograph Syst 3: 369-385
Author
Roger Bivand, Virgilio Gómez-Rubio Virgilio.Gomez@uclm.es
Examples
data(boston, package="spData")
lw<-nb2listw(boston.soi)
x<-boston.c$CMEDV
y<-boston.c$CRIM
lee.mc(x, y, nsim=99, lw, zero.policy=TRUE, alternative="two.sided")
#>
#> Monte-Carlo simulation of Lee's L
#>
#> data: x , y
#> weights: lw
#> number of simulations + 1: 100
#>
#> statistic = -0.3263, observed rank = 1, p-value = 0.02
#> alternative hypothesis: two.sided
#>
#Test with missing values
x[1:5]<-NA
y[3:7]<-NA
lee.mc(x, y, nsim=99, lw, zero.policy=TRUE, alternative="two.sided",
na.action=na.omit)
#>
#> Monte-Carlo simulation of Lee's L
#>
#> data: x , y
#> weights: lw
#> omitted: 1, 2, 3, 4, 5, 6, 7
#> number of simulations + 1: 100
#>
#> statistic = -0.32447, observed rank = 1, p-value = 0.02
#> alternative hypothesis: two.sided
#>