Permutation test for Lee's L statistic
lee.mc.RdA permutation test for Lee's L statistic calculated by using nsim random permutations of x and y for the given spatial weighting scheme, to establish the rank of the observed statistic in relation to the nsim simulated values.
Usage
lee.mc(x, y, listw, nsim, zero.policy=attr(listw, "zero.policy"), alternative="greater",
 na.action=na.fail, spChk=NULL, return_boot=FALSE)Arguments
- x
- a numeric vector the same length as the neighbours list in listw 
- y
- a numeric vector the same length as the neighbours list in listw 
- listw
- a - listwobject created for example by- nb2listw
- nsim
- number of permutations 
- zero.policy
- default - attr(listw, "zero.policy")as set when- listwwas created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
- alternative
- a character string specifying the alternative hypothesis, must be one of "greater" (default), "two.sided", or "less". 
- na.action
- a function (default - na.fail), can also be- na.omitor- na.exclude- in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to- nb2listwmay be subsetted.- na.passis not permitted because it is meaningless in a permutation test.
- spChk
- should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use - get.spChkOption()
- return_boot
- return an object of class - bootfrom the equivalent permutation bootstrap rather than an object of class- htest
Value
A list with class htest and mc.sim containing the following components:
- statistic
- the value of the observed Lee's L. 
- parameter
- the rank of the observed Lee's L. 
- p.value
- the pseudo p-value of the test. 
- alternative
- a character string describing the alternative hypothesis. 
- method
- a character string giving the method used. 
- data.name
- a character string giving the name(s) of the data, and the number of simulations. 
- res
- nsim simulated values of statistic, final value is observed statistic 
References
Lee (2001). Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I. J Geograph Syst 3: 369-385
Author
Roger Bivand, Virgilio Gómez-Rubio Virgilio.Gomez@uclm.es
Examples
data(boston, package="spData")
lw<-nb2listw(boston.soi)
x<-boston.c$CMEDV
y<-boston.c$CRIM
lee.mc(x, y, nsim=99, lw, zero.policy=TRUE, alternative="two.sided")
#> 
#> 	Monte-Carlo simulation of Lee's L
#> 
#> data:  x ,  y 
#> weights: lw  
#> number of simulations + 1: 100 
#> 
#> statistic = -0.3263, observed rank = 1, p-value = 0.02
#> alternative hypothesis: two.sided
#> 
#Test with missing values
x[1:5]<-NA
y[3:7]<-NA
lee.mc(x, y, nsim=99, lw, zero.policy=TRUE, alternative="two.sided", 
   na.action=na.omit)
#> 
#> 	Monte-Carlo simulation of Lee's L
#> 
#> data:  x ,  y 
#> weights: lw 
#> omitted: 1, 2, 3, 4, 5, 6, 7 
#> number of simulations + 1: 100 
#> 
#> statistic = -0.32447, observed rank = 1, p-value = 0.02
#> alternative hypothesis: two.sided
#>