read raster/array dataset from file or connection
read_stars(
.x,
sub = TRUE,
...,
options = character(0),
driver = character(0),
quiet = FALSE,
NA_value = NA_real_,
along = NA_integer_,
RasterIO = list(),
proxy = getOption("stars.n_proxy") %||% 1e+08,
curvilinear = character(0),
normalize_path = TRUE,
RAT = character(0),
tolerance = 1e-10,
exclude = "",
shorten = TRUE
)
character vector with name(s) of file(s) or data source(s) to be read, or a function that returns such a vector
character, integer or logical; name, index or indicator of sub-dataset(s) to be read
passed on to st_as_stars if curvilinear
was set
character; opening options
character; driver to use for opening file. To override fixing for subdatasets and autodetect them as well, use NULL
.
logical; print progress output?
numeric value to be used for conversion into NA values; by default this is read from the input file
length-one character or integer, or list; determines how several arrays are combined, see Details.
list with named parameters for GDAL's RasterIO, to further control the extent, resolution and bands to be read from the data source; see details.
logical; if TRUE
, an object of class stars_proxy
is read which contains array
metadata only; if FALSE
the full array data is read in memory. Always FALSE
for curvilinear girds.
If set to a number, defaults to TRUE
when the number of cells to be read is larger than that number.
length two character vector with names of subdatasets holding longitude and latitude values for all raster cells, or named length 2 list holding longitude and latitude matrices; the names of this list should correspond to raster dimensions referred to
logical; if FALSE
, suppress a call to normalizePath on .x
character; raster attribute table column name to use as factor levels
numeric; passed on to all.equal for comparing dimension parameters.
character; vector with category value(s) to exclude
logical or character; if TRUE
and length(.x) > 1
, remove common start and end parts of array names; if character a new prefix
object of class stars
In case .x
contains multiple files, they will all be read and combined with c.stars. Along which dimension, or how should objects be merged? If along
is set to NA
it will merge arrays as new attributes if all objects have identical dimensions, or else try to merge along time if a dimension called time
indicates different time stamps. A single name (or positive value) for along
will merge along that dimension, or create a new one if it does not already exist. If the arrays should be arranged along one of more dimensions with values (e.g. time stamps), a named list can passed to along
to specify them; see example.
RasterIO
is a list with zero or more of the following named arguments:
nXOff
, nYOff
(both 1-based: the first row/col has offset value 1),
nXSize
, nYSize
, nBufXSize
, nBufYSize
, bands
, resample
.
See https://gdal.org/doxygen/classGDALDataset.html for their meaning;
bands
is an integer vector containing the band numbers to be read (1-based: first band is 1).
Note that if nBufXSize
or nBufYSize
are specified for downsampling an image,
resulting in an adjusted geotransform. resample
reflects the resampling method and
has to be one of: "nearest_neighbour" (the default),
"bilinear", "cubic", "cubic_spline", "lanczos", "average", "mode", or "Gauss".
Data that are read into memory (proxy=FALSE
) are read into a numeric (double) array, except for categorical variables which are read into an numeric (integer) array of class factor
.
tif = system.file("tif/L7_ETMs.tif", package = "stars")
(x1 = read_stars(tif))
#> stars object with 3 dimensions and 1 attribute
#> attribute(s):
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> L7_ETMs.tif 1 54 69 68.91242 86 255
#> dimension(s):
#> from to offset delta refsys point x/y
#> x 1 349 288776 28.5 SIRGAS 2000 / UTM zone 25S FALSE [x]
#> y 1 352 9120761 -28.5 SIRGAS 2000 / UTM zone 25S FALSE [y]
#> band 1 6 NA NA NA NA
(x2 = read_stars(c(tif, tif)))
#> stars object with 3 dimensions and 2 attributes
#> attribute(s):
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> L7_ETMs.tif 1 54 69 68.91242 86 255
#> L7_ETMs.tif.1 1 54 69 68.91242 86 255
#> dimension(s):
#> from to offset delta refsys point x/y
#> x 1 349 288776 28.5 SIRGAS 2000 / UTM zone 25S FALSE [x]
#> y 1 352 9120761 -28.5 SIRGAS 2000 / UTM zone 25S FALSE [y]
#> band 1 6 NA NA NA NA
(x3 = read_stars(c(tif, tif), along = "band"))
#> stars object with 3 dimensions and 1 attribute
#> attribute(s), summary of first 1e+05 cells:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> L7_ETMs.tif 47 65 76 77.3419 87 255
#> dimension(s):
#> from to offset delta refsys point x/y
#> x 1 349 288776 28.5 SIRGAS 2000 / UTM zone 25S FALSE [x]
#> y 1 352 9120761 -28.5 SIRGAS 2000 / UTM zone 25S FALSE [y]
#> band 1 12 NA NA NA NA
(x4 = read_stars(c(tif, tif), along = "new_dimensions")) # create 4-dimensional array
#> stars object with 4 dimensions and 1 attribute
#> attribute(s), summary of first 1e+05 cells:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> L7_ETMs.tif 47 65 76 77.3419 87 255
#> dimension(s):
#> from to offset delta refsys point x/y
#> x 1 349 288776 28.5 SIRGAS 2000 / UTM zone 25S FALSE [x]
#> y 1 352 9120761 -28.5 SIRGAS 2000 / UTM zone 25S FALSE [y]
#> band 1 6 NA NA NA NA
#> new_dimensions 1 2 NA NA NA NA
x1o = read_stars(tif, options = "OVERVIEW_LEVEL=1")
t1 = as.Date("2018-07-31")
# along is a named list indicating two dimensions:
read_stars(c(tif, tif, tif, tif), along = list(foo = c("bar1", "bar2"), time = c(t1, t1+2)))
#> stars object with 5 dimensions and 1 attribute
#> attribute(s), summary of first 1e+05 cells:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> L7_ETMs.tif 47 65 76 77.3419 87 255
#> dimension(s):
#> from to offset delta refsys point values x/y
#> x 1 349 288776 28.5 SIRGAS 2000 / UTM zone 25S FALSE NULL [x]
#> y 1 352 9120761 -28.5 SIRGAS 2000 / UTM zone 25S FALSE NULL [y]
#> band 1 6 NA NA NA NA NULL
#> foo 1 2 NA NA NA NA bar1, bar2
#> time 1 2 2018-07-31 2 days Date NA NULL
m = matrix(1:120, nrow = 12, ncol = 10)
dim(m) = c(x = 10, y = 12) # named dim
st = st_as_stars(m)
attr(st, "dimensions")$y$delta = -1
attr(st, "dimensions")$y$offset = 12
st
#> stars object with 2 dimensions and 1 attribute
#> attribute(s):
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> A1 1 30.75 60.5 60.5 90.25 120
#> dimension(s):
#> from to offset delta point x/y
#> x 1 10 0 1 FALSE [x]
#> y 1 12 12 -1 FALSE [y]
tmp = tempfile(fileext = ".tif")
write_stars(st, tmp)
(red <- read_stars(tmp))
#> stars object with 2 dimensions and 1 attribute
#> attribute(s):
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> file3c101b14c313.tif 1 30.75 60.5 60.5 90.25 120
#> dimension(s):
#> from to offset delta x/y
#> x 1 10 0 1 [x]
#> y 1 12 12 -1 [y]
read_stars(tmp, RasterIO = list(nXOff = 1, nYOff = 1, nXSize = 10, nYSize = 12,
nBufXSize = 2, nBufYSize = 2))[[1]]
#> [,1] [,2]
#> [1,] 33 93
#> [2,] 38 98
(red <- read_stars(tmp, RasterIO = list(nXOff = 1, nYOff = 1, nXSize = 10, nYSize = 12,
nBufXSize = 2, nBufYSize = 2)))
#> stars object with 2 dimensions and 1 attribute
#> attribute(s):
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> file3c101b14c313.tif 33 36.75 65.5 65.5 94.25 98
#> dimension(s):
#> from to offset delta x/y
#> x 1 2 0 5 [x]
#> y 1 2 12 -6 [y]
red[[1]] # cell values of subsample grid:
#> [,1] [,2]
#> [1,] 33 93
#> [2,] 38 98
if (FALSE) {
plot(st, reset = FALSE, axes = TRUE, ylim = c(-.1,12.1), xlim = c(-.1,10.1),
main = "nBufXSize & nBufYSize demo", text_values = TRUE)
plot(st_as_sfc(red, as_points = TRUE), add = TRUE, col = 'red', pch = 16)
plot(st_as_sfc(st_as_stars(st), as_points = FALSE), add = TRUE, border = 'grey')
plot(st_as_sfc(red, as_points = FALSE), add = TRUE, border = 'green', lwd = 2)
}
file.remove(tmp)
#> [1] TRUE