Global G test for spatial autocorrelation
globalG.test.Rd
The global G statistic for spatial autocorrelation, complementing the local Gi LISA measures: localG
.
Usage
globalG.test(x, listw, zero.policy=attr(listw, "zero.policy"), alternative="greater",
spChk=NULL, adjust.n=TRUE, B1correct=TRUE, adjust.x=TRUE, Arc_all_x=FALSE,
na.action=na.fail)
Arguments
- x
a numeric vector the same length as the neighbours list in listw
- listw
a
listw
object created for example bynb2listw
; if a sequence of distance bands is to be used, it is recommended that the weights style be binary (one ofc("B", "C", "U")
).- zero.policy
default
attr(listw, "zero.policy")
as set whenlistw
was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA- alternative
a character string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".
- spChk
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use
get.spChkOption()
- adjust.n
default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted
- B1correct
default TRUE, if TRUE, the erratum referenced below: "On page 195, the coefficient of W2 in B1, (just below center of the page) should be 6, not 3." is applied; if FALSE, 3 is used (as in CrimeStat IV)
- adjust.x
default TRUE, if TRUE, x values of observations with no neighbours are omitted in the denominator of G
- Arc_all_x
default FALSE, if Arc_all_x=TRUE and adjust.x=TRUE, use the full x vector in part of the denominator term for G
- na.action
a function (default
na.fail
), can also bena.omit
orna.exclude
- in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument tonb2listw
may be subsetted.na.pass
is not permitted.
Value
A list with class htest
containing the following components:
- statistic
the value of the standard deviate of Getis-Ord G.
- p.value
the p-value of the test.
- estimate
the value of the observed statistic, its expectation and variance.
- alternative
a character string describing the alternative hypothesis.
- data.name
a character string giving the name(s) of the data.
References
Getis. A, Ord, J. K. 1992 The analysis of spatial association by use of distance statistics, Geographical Analysis, 24, p. 195; see also Getis. A, Ord, J. K. 1993 Erratum, Geographical Analysis, 25, p. 276; Bivand RS, Wong DWS 2018 Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716–748 doi:10.1007/s11749-018-0599-x
Author
Hisaji ONO hi-ono@mn.xdsl.ne.jp and Roger Bivand Roger.Bivand@nhh.no
Examples
nc.sids <- st_read(system.file("shapes/sids.gpkg", package="spData")[1], quiet=TRUE)
sidsrate79 <- (1000*nc.sids$SID79)/nc.sids$BIR79
dists <- c(10, 20, 30, 33, 40, 50, 60, 70, 80, 90, 100)
ndists <- length(dists)
ZG <- vector(mode="list", length=ndists)
names(ZG) <- as.character(dists)
milesxy <- cbind(nc.sids$east, nc.sids$north)
for (i in 1:ndists) {
thisnb <- dnearneigh(milesxy, 0, dists[i])
thislw <- nb2listw(thisnb, style="B", zero.policy=TRUE)
ZG[[i]] <- globalG.test(sidsrate79, thislw, zero.policy=TRUE)
}
#> Warning: neighbour object has 98 sub-graphs
#> Warning: neighbour object has 37 sub-graphs
#> Warning: neighbour object has 3 sub-graphs
t(sapply(ZG, function(x) c(x$estimate[1], x$statistic, p.value=unname(x$p.value))))
#> Global G statistic standard deviate p.value
#> 10 0.33548581 0.04859237 0.4806221
#> 20 0.02024945 -0.73262399 0.7681061
#> 30 0.04032434 -0.75011405 0.7734070
#> 33 0.05312271 0.40157023 0.3440002
#> 40 0.07400279 -0.04345713 0.5173314
#> 50 0.11471743 0.58686472 0.2786473
#> 60 0.15457553 -0.35823892 0.6399177
#> 70 0.19839023 -0.27864299 0.6097406
#> 80 0.24606972 -0.18791364 0.5745278
#> 90 0.30073463 0.11457610 0.4543906
#> 100 0.34879996 0.31591356 0.3760341
for (i in 1:ndists) {
thisnb <- dnearneigh(milesxy, 0, dists[i])
thislw <- nb2listw(thisnb, style="B", zero.policy=TRUE)
ZG[[i]] <- globalG.test(sidsrate79, thislw, zero.policy=TRUE, alternative="two.sided")
}
#> Warning: neighbour object has 98 sub-graphs
#> Warning: neighbour object has 37 sub-graphs
#> Warning: neighbour object has 3 sub-graphs
t(sapply(ZG, function(x) c(x$estimate[1], x$statistic, p.value=unname(x$p.value))))
#> Global G statistic standard deviate p.value
#> 10 0.33548581 0.04859237 0.9612441
#> 20 0.02024945 -0.73262399 0.4637878
#> 30 0.04032434 -0.75011405 0.4531860
#> 33 0.05312271 0.40157023 0.6880003
#> 40 0.07400279 -0.04345713 0.9653371
#> 50 0.11471743 0.58686472 0.5572946
#> 60 0.15457553 -0.35823892 0.7201645
#> 70 0.19839023 -0.27864299 0.7805188
#> 80 0.24606972 -0.18791364 0.8509443
#> 90 0.30073463 0.11457610 0.9087811
#> 100 0.34879996 0.31591356 0.7520681
data(oldcol)
crime <- COL.OLD$CRIME
is.na(crime) <- sample(1:length(crime), 10)
res <- try(globalG.test(crime, nb2listw(COL.nb, style="B"),
na.action=na.fail))
#> Error in na.fail.default(x) : missing values in object
globalG.test(crime, nb2listw(COL.nb, style="B"), zero.policy=TRUE,
na.action=na.omit)
#> Warning: subsetting caused increase in subgraph count
#>
#> Getis-Ord global G statistic
#>
#> data: crime
#> weights: nb2listw(COL.nb, style = "B")
#> omitted: 2, 3, 5, 6, 7, 10, 13, 30, 39, 49
#> n reduced by no-neighbour observations
#>
#> standard deviate = 3.8084, p-value = 6.993e-05
#> alternative hypothesis: greater
#> sample estimates:
#> Global G statistic Expectation Variance
#> 1.441233e-01 1.123755e-01 6.949287e-05
#>
globalG.test(crime, nb2listw(COL.nb, style="B"), zero.policy=TRUE,
na.action=na.exclude)
#> Warning: subsetting caused increase in subgraph count
#>
#> Getis-Ord global G statistic
#>
#> data: crime
#> weights: nb2listw(COL.nb, style = "B")
#> omitted: 2, 3, 5, 6, 7, 10, 13, 30, 39, 49
#> n reduced by no-neighbour observations
#>
#> standard deviate = 3.8084, p-value = 6.993e-05
#> alternative hypothesis: greater
#> sample estimates:
#> Global G statistic Expectation Variance
#> 1.441233e-01 1.123755e-01 6.949287e-05
#>
try(globalG.test(crime, nb2listw(COL.nb, style="B"), na.action=na.pass))
#> Error in globalG.test(crime, nb2listw(COL.nb, style = "B"), na.action = na.pass) :
#> na.pass not permitted