R/ee_download.R
ee_gcs_to_local.Rd
Move results of an EE task saved in Google Cloud Storage to a local directory.
ee_gcs_to_local(
task,
dsn,
public = FALSE,
metadata = FALSE,
overwrite = TRUE,
quiet = FALSE
)
List generated after the EE task is correctly finished. See details.
Character. Output filename. If missing, a temporary
file (i.e. tempfile()
) will be assigned.
Logical. If TRUE, a public link to Google Cloud Storage resource is created. "Public Access Prevention" may need to be removed. In addition, the bucket access control configuration must be "fine-grained". See GCS public files documentation for more details.
Logical. If TRUE, export the metadata related to the Google Cloud Storage resource. See details.
A boolean argument that indicates whether "filename" should be overwritten. By default TRUE.
Logical. Suppress info message
If metadata
is FALSE, will return the filename of the Google
Cloud Storage resource on their system. Otherwise, a list with two elements
(dns
and metadata
) is returned.
The task argument requires a status of "COMPLETED" because
the parameters required to identify EE items in Google Drive
are retrieved from ee$batch$Export$*$toCloudStorage(...)$start()$status()
.
If the argument metadata
is TRUE, a list containing the following
elements is exported and appended to the output filename (dsn):
ee_id: Name of the Earth Engine task.
gcs_name: Name of the Table in Google Cloud Storage.
gcs_bucket: Name of the bucket.
gcs_fileFormat: Format of the table.
gcs_public_link: Download link to the table.
gcs_URI: gs:// link to the table.
Other generic download functions:
ee_drive_to_local()
if (FALSE) { # \dontrun{
library(rgee)
library(stars)
library(sf)
ee_users()
ee_Initialize(gcs = TRUE)
# Define study area (local -> earth engine)
# Communal Reserve Amarakaeri - Peru
rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73)
ROI <- c(rlist$xmin, rlist$ymin,
rlist$xmax, rlist$ymin,
rlist$xmax, rlist$ymax,
rlist$xmin, rlist$ymax,
rlist$xmin, rlist$ymin)
ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>%
list() %>%
st_polygon() %>%
st_sfc() %>%
st_set_crs(4326) %>%
sf_as_ee()
# Get the mean annual NDVI for 2011
cloudMaskL457 <- function(image) {
qa <- image$select("pixel_qa")
cloud <- qa$bitwiseAnd(32L)$
And(qa$bitwiseAnd(128L))$
Or(qa$bitwiseAnd(8L))
mask2 <- image$mask()$reduce(ee$Reducer$min())
image <- image$updateMask(cloud$Not())$updateMask(mask2)
image$normalizedDifference(list("B4", "B3"))
}
ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$
filterBounds(ee$FeatureCollection(ee_ROI))$
filterDate("2011-01-01", "2011-12-31")$
map(cloudMaskL457)
# Create simple composite
mean_l5 <- ic_l5$mean()$rename("NDVI")
mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500)
mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI)
# Move results from Earth Engine to Drive
task_img <- ee_image_to_gcs(
image = mean_l5_Amarakaeri,
bucket = "rgee_dev",
fileFormat = "GEO_TIFF",
region = ee_ROI,
fileNamePrefix = "my_image_demo"
)
task_img$start()
ee_monitoring(task_img)
# Move results from Drive to local
img <- ee_gcs_to_local(task = task_img)
} # }