Skip to contents
-
DE_RB_2005
- Spatio-temporal data set with rural background PM10 concentrations in Germany 2005
-
coalash
- Coal ash samples from a mine in Pennsylvania
-
estiStAni()
- Estimation of the spatio-temporal anisotropy
-
extractPar()
extractParNames()
- Extracting parameters and their names from a spatio-temporal variogram model
-
fit.StVariogram()
- Fit a spatio-temporal sample variogram to a sample variogram
-
fit.lmc()
- Fit a Linear Model of Coregionalization to a Multivariable Sample Variogram
-
fit.variogram()
- Fit a Variogram Model to a Sample Variogram
-
fit.variogram.gls()
- GLS fitting of variogram parameters
-
fit.variogram.reml()
- REML Fit Direct Variogram Partial Sills to Data
-
fulmar
- Fulmaris glacialis data
-
get.contr()
- Calculate contrasts from multivariable predictions
-
gstat()
print(<gstat>)
- Create gstat objects, or subset it
-
hscat()
- Produce h-scatterplot
-
image(<data.frame>)
xyz2img()
- Image Gridded Coordinates in Data Frame
-
jura
- Jura data set
-
krige()
krige.locations()
krige.spatial()
krige0()
idw()
idw.locations()
idw.spatial()
idw0()
- Simple, Ordinary or Universal, global or local, Point or Block Kriging, or simulation.
-
gstat.cv()
krige.cv()
krige.cv.locations()
krige.cv.spatial()
- (co)kriging cross validation, n-fold or leave-one-out
-
krigeST()
krigeSTTg()
- Ordinary global Spatio-Temporal Kriging
-
krigeSTSimTB()
- conditional/unconditional spatio-temporal simulation
-
krigeSimCE()
- Simulation based on circulant embedding
-
krigeTg()
- TransGaussian kriging using Box-Cox transforms
-
map.to.lev()
- rearrange data frame for plotting with levelplot
-
meuse.all
- Meuse river data set – original, full data set
-
meuse.alt
- Meuse river altitude data set
-
ncp.grid
- Grid for the NCP, the Dutch part of the North Sea
-
ossfim()
- Kriging standard errors as function of grid spacing and block size
-
oxford
- Oxford soil samples
-
pcb
- PCB138 measurements in sediment at the NCP, the Dutch part of the North Sea
-
plot(<gstatVariogram>)
plot(<variogramMap>)
plot(<StVariogram>)
- Plot a sample variogram, and possibly a fitted model
-
plot(<pointPairs>)
- Plot a point pairs, identified from a variogram cloud
-
plot(<variogramCloud>)
- Plot and Identify Data Pairs on Sample Variogram Cloud
-
predict(<gstat>)
- Multivariable Geostatistical Prediction and Simulation
-
get_gstat_progress()
set_gstat_progress()
- Get or set progress indicator
-
show.vgms()
- Plot Variogram Model Functions
-
sic2004
- Spatial Interpolation Comparison 2004 data set: Natural Ambient Radioactivity
-
sic97
- Spatial Interpolation Comparison 1997 data set: Swiss Rainfall
-
spplot.vcov()
- Plot map matrix of prediction error variances and covariances
-
tull
- Südliche Tullnerfeld data set
-
variogram(<gstat>)
variogram(<formula>)
variogram(<default>)
print(<gstatVariogram>)
print(<variogramCloud>)
- Calculate Sample or Residual Variogram or Variogram Cloud
-
variogramLine()
- Semivariance Values For a Given Variogram Model
-
variogramST()
- Calculate Spatio-Temporal Sample Variogram
-
variogramSurface()
- Semivariance values for a given spatio-temporal variogram model
-
vgm()
print(<variogramModel>)
plot(<variogramModel>)
as.vgm.variomodel()
- Generate, or Add to Variogram Model
-
vgm.panel.xyplot()
panel.pointPairs()
- panel functions for most of the variogram plots through lattice
-
vgmArea()
- point-point, point-area or area-area semivariance
-
vgmAreaST()
- Function that returns the covariances for areas
-
vgmST()
- Constructing a spatio-temporal variogram
-
vv
- Precomputed variogram for PM10 in data set air
-
walker
- Walker Lake sample and exhaustive data sets
-
wind
- Ireland wind data, 1961-1978