Compute Euclidian or great circle distance between pairs of geometries; compute, the area or the length of a set of geometries.

st_area(x, ...)

# S3 method for sfc
st_area(x, ...)

st_length(x, ...)

  by_element = FALSE,
  which = ifelse(isTRUE(st_is_longlat(x)), "Great Circle", "Euclidean"),
  par = 0,
  tolerance = 0



object of class sf, sfc or sfg


passed on to s2_distance or s2_distance_matrix


object of class sf, sfc or sfg, defaults to x




logical; if TRUE, return a vector with distance between the first elements of x and y, the second, etc. if FALSE, return the dense matrix with all pairwise distances.


character; for Cartesian coordinates only: one of Euclidean, Hausdorff or Frechet; for geodetic coordinates, great circle distances are computed; see details


for which equal to Hausdorff or Frechet, optionally use a value between 0 and 1 to densify the geometry


ignored if st_is_longlat(x) is FALSE; otherwise, if set to a positive value, the first distance smaller than tolerance will be returned, and true distance may be smaller; this may speed up computation. In meters, or a units object convertible to meters.


If the coordinate reference system of x was set, these functions return values with unit of measurement; see set_units.

st_area returns the area of a geometry, in the coordinate reference system used; in case x is in degrees longitude/latitude, st_geod_area is used for area calculation.

st_length returns the length of a LINESTRING or MULTILINESTRING geometry, using the coordinate reference system. POINT, MULTIPOINT, POLYGON or MULTIPOLYGON geometries return zero.

If by_element is FALSE st_distance returns a dense numeric matrix of dimension length(x) by length(y); otherwise it returns a numeric vector of length x or y, the shorter one being recycled. Distances involving empty geometries are NA.


great circle distance calculations use by default spherical distances (s2_distance or s2_distance_matrix); if sf_use_s2() is FALSE, ellipsoidal distances are computed using st_geod_distance which uses function geod_inverse from GeographicLib (part of PROJ); see Karney, Charles FF, 2013, Algorithms for geodesics, Journal of Geodesy 87(1), 43--55

See also

st_dimension, st_cast to convert geometry types


b0 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1)))) b1 = b0 + 2 b2 = b0 + c(-0.2, 2) x = st_sfc(b0, b1, b2) st_area(x)
#> [1] 4 4 4
line = st_sfc(st_linestring(rbind(c(30,30), c(40,40))), crs = 4326) st_length(line)
#> 1435335 [m]
outer = matrix(c(0,0,10,0,10,10,0,10,0,0),ncol=2, byrow=TRUE) hole1 = matrix(c(1,1,1,2,2,2,2,1,1,1),ncol=2, byrow=TRUE) hole2 = matrix(c(5,5,5,6,6,6,6,5,5,5),ncol=2, byrow=TRUE) poly = st_polygon(list(outer, hole1, hole2)) mpoly = st_multipolygon(list( list(outer, hole1, hole2), list(outer + 12, hole1 + 12) )) st_length(st_sfc(poly, mpoly))
#> [1] 0 0
p = st_sfc(st_point(c(0,0)), st_point(c(0,1)), st_point(c(0,2))) st_distance(p, p)
#> [,1] [,2] [,3] #> [1,] 0 1 2 #> [2,] 1 0 1 #> [3,] 2 1 0
st_distance(p, p, by_element = TRUE)
#> [1] 0 0 0