Tidyverse methods for sf objects. Geometries are sticky, use as.data.frame to let dplyr
's own methods drop them. Use these methods without the .sf suffix and after loading the tidyverse package with the generic (or after loading package tidyverse).
dplyr_reconstruct.sf(data, template)
filter.sf(.data, ..., .dots)
arrange.sf(.data, ..., .dots)
group_by.sf(.data, ..., add = FALSE)
ungroup.sf(x, ...)
rowwise.sf(x, ...)
mutate.sf(.data, ..., .dots)
transmute.sf(.data, ..., .dots)
select.sf(.data, ...)
rename.sf(.data, ...)
slice.sf(.data, ..., .dots)
summarise.sf(.data, ..., .dots, do_union = TRUE, is_coverage = FALSE)
distinct.sf(.data, ..., .keep_all = FALSE)
gather.sf(
data,
key,
value,
...,
na.rm = FALSE,
convert = FALSE,
factor_key = FALSE
)
pivot_longer.sf(
data,
cols,
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL,
...
)
pivot_wider.sf(
data,
id_cols = NULL,
names_from,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_repair = "check_unique",
values_from,
values_fill = NULL,
values_fn = NULL,
...
)
spread.sf(
data,
key,
value,
fill = NA,
convert = FALSE,
drop = TRUE,
sep = NULL
)
sample_n.sf(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame())
sample_frac.sf(
tbl,
size = 1,
replace = FALSE,
weight = NULL,
.env = parent.frame()
)
nest.sf(.data, ...)
separate.sf(
data,
col,
into,
sep = "[^[:alnum:]]+",
remove = TRUE,
convert = FALSE,
extra = "warn",
fill = "warn",
...
)
separate_rows.sf(data, ..., sep = "[^[:alnum:]]+", convert = FALSE)
unite.sf(data, col, ..., sep = "_", remove = TRUE)
unnest.sf(data, ..., .preserve = NULL)
drop_na.sf(x, ...)
inner_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
left_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
right_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
full_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
semi_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
anti_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
see original function docs
see original function docs
data object of class sf
other arguments
see corresponding function in package dplyr
see corresponding function in dplyr
A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
logical; in case summary
does not create a geometry column, should geometries be created by unioning using st_union, or simply by combining using st_combine? Using st_union resolves internal boundaries, but in case of unioning points, this will likely change the order of the points; see Details.
logical; if do_union
is TRUE
, use an optimized algorithm for features that form a polygonal coverage (have no overlaps)
see corresponding function in dplyr
see original function docs
see original function docs
see original function docs
see separate_rows
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see separate_rows
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see separate
see separate
see separate
see separate
see unnest
A join specification created with join_by()
, or a character
vector of variables to join by.
If NULL
, the default, *_join()
will perform a natural join, using all
variables in common across x
and y
. A message lists the variables so
that you can check they're correct; suppress the message by supplying by
explicitly.
To join on different variables between x
and y
, use a join_by()
specification. For example, join_by(a == b)
will match x$a
to y$b
.
To join by multiple variables, use a join_by()
specification with
multiple expressions. For example, join_by(a == b, c == d)
will match
x$a
to y$b
and x$c
to y$d
. If the column names are the same between
x
and y
, you can shorten this by listing only the variable names, like
join_by(a, c)
.
join_by()
can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on
these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b")
joins x$a
to y$a
and x$b
to y$b
. If variable names differ between x
and y
,
use a named character vector like by = c("x_a" = "y_a", "x_b" = "y_b")
.
To perform a cross-join, generating all combinations of x
and y
, see
cross_join()
.
If x
and y
are not from the same data source,
and copy
is TRUE
, then y
will be copied into the
same src as x
. This allows you to join tables across srcs, but
it is a potentially expensive operation so you must opt into it.
If there are non-joined duplicate variables in x
and
y
, these suffixes will be added to the output to disambiguate them.
Should be a character vector of length 2.
an object of class sf
select
keeps the geometry regardless whether it is selected or not; to deselect it, first pipe through as.data.frame
to let dplyr's own select
drop it.
In case one or more of the arguments (expressions) in the summarise
call creates a geometry list-column, the first of these will be the (active) geometry of the returned object. If this is not the case, a geometry column is created, depending on the value of do_union
.
In case do_union
is FALSE
, summarise
will simply combine geometries using c.sfg. When polygons sharing a boundary are combined, this leads to geometries that are invalid; see for instance https://github.com/r-spatial/sf/issues/681.
distinct
gives distinct records for which all attributes and geometries are distinct; st_equals is used to find out which geometries are distinct.
nest
assumes that a simple feature geometry list-column was among the columns that were nested.
if (require(dplyr, quietly = TRUE)) {
nc = read_sf(system.file("shape/nc.shp", package="sf"))
nc %>% filter(AREA > .1) %>% plot()
# plot 10 smallest counties in grey:
st_geometry(nc) %>% plot()
nc %>% select(AREA) %>% arrange(AREA) %>% slice(1:10) %>% plot(add = TRUE, col = 'grey')
title("the ten counties with smallest area")
nc2 <- nc %>% mutate(area10 = AREA/10)
nc %>% slice(1:2)
}
#> Warning: plotting the first 10 out of 14 attributes; use max.plot = 14 to plot all
#> Simple feature collection with 2 features and 14 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -81.74107 ymin: 36.23436 xmax: -80.90344 ymax: 36.58965
#> Geodetic CRS: NAD27
#> # A tibble: 2 × 15
#> AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS…¹ BIR74 SID74 NWBIR74
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.114 1.44 1825 1825 Ashe 37009 37009 5 1091 1 10
#> 2 0.061 1.23 1827 1827 Allegh… 37005 37005 3 487 0 10
#> # … with 4 more variables: BIR79 <dbl>, SID79 <dbl>, NWBIR79 <dbl>,
#> # geometry <MULTIPOLYGON [°]>, and abbreviated variable name ¹CRESS_ID
# plot 10 smallest counties in grey:
if (require(dplyr, quietly = TRUE)) {
st_geometry(nc) %>% plot()
nc %>% select(AREA) %>% arrange(AREA) %>% slice(1:10) %>% plot(add = TRUE, col = 'grey')
title("the ten counties with smallest area")
}
if (require(dplyr, quietly = TRUE)) {
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc %>% group_by(area_cl) %>% class()
}
#> [1] "sf" "grouped_df" "tbl_df" "tbl" "data.frame"
if (require(dplyr, quietly = TRUE)) {
nc2 <- nc %>% mutate(area10 = AREA/10)
}
if (require(dplyr, quietly = TRUE)) {
nc %>% transmute(AREA = AREA/10, geometry = geometry) %>% class()
nc %>% transmute(AREA = AREA/10) %>% class()
}
#> [1] "sf" "tbl_df" "tbl" "data.frame"
if (require(dplyr, quietly = TRUE)) {
nc %>% select(SID74, SID79) %>% names()
nc %>% select(SID74, SID79, geometry) %>% names()
nc %>% select(SID74, SID79) %>% class()
nc %>% select(SID74, SID79, geometry) %>% class()
}
#> [1] "sf" "tbl_df" "tbl" "data.frame"
if (require(dplyr, quietly = TRUE)) {
nc2 <- nc %>% rename(area = AREA)
}
if (require(dplyr, quietly = TRUE)) {
nc %>% slice(1:2)
}
#> Simple feature collection with 2 features and 15 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -81.74107 ymin: 36.23436 xmax: -80.90344 ymax: 36.58965
#> Geodetic CRS: NAD27
#> # A tibble: 2 × 16
#> AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS…¹ BIR74 SID74 NWBIR74
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.114 1.44 1825 1825 Ashe 37009 37009 5 1091 1 10
#> 2 0.061 1.23 1827 1827 Allegh… 37005 37005 3 487 0 10
#> # … with 5 more variables: BIR79 <dbl>, SID79 <dbl>, NWBIR79 <dbl>,
#> # geometry <MULTIPOLYGON [°]>, area_cl <fct>, and abbreviated variable name
#> # ¹CRESS_ID
if (require(dplyr, quietly = TRUE)) {
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc.g <- nc %>% group_by(area_cl)
nc.g %>% summarise(mean(AREA))
nc.g %>% summarise(mean(AREA)) %>% plot(col = grey(3:6 / 7))
nc %>% as.data.frame %>% summarise(mean(AREA))
}
#> mean(AREA)
#> 1 0.12626
if (require(dplyr, quietly = TRUE)) {
nc[c(1:100, 1:10), ] %>% distinct() %>% nrow()
}
#> [1] 100
if (require(tidyr, quietly = TRUE) && require(dplyr, quietly = TRUE)) {
nc %>% select(SID74, SID79) %>% gather("VAR", "SID", -geometry) %>% summary()
}
#> geometry VAR SID
#> MULTIPOLYGON :200 Length:200 Min. : 0.000
#> epsg:4267 : 0 Class :character 1st Qu.: 2.000
#> +proj=long...: 0 Mode :character Median : 5.000
#> Mean : 7.515
#> 3rd Qu.: 9.000
#> Max. :57.000
if (require(tidyr, quietly = TRUE) && require(dplyr, quietly = TRUE)) {
nc$row = 1:100 # needed for spread to work
nc %>% select(SID74, SID79, geometry, row) %>%
gather("VAR", "SID", -geometry, -row) %>%
spread(VAR, SID) %>% head()
}
#> Simple feature collection with 6 features and 3 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -81.74107 ymin: 36.07282 xmax: -75.77316 ymax: 36.58965
#> Geodetic CRS: NAD27
#> # A tibble: 6 × 4
#> geometry row SID74 SID79
#> <MULTIPOLYGON [°]> <int> <dbl> <dbl>
#> 1 (((-81.47276 36.23436, -81.54084 36.27251, -81.56198 36.273… 1 1 0
#> 2 (((-81.23989 36.36536, -81.24069 36.37942, -81.26284 36.405… 2 0 3
#> 3 (((-80.45634 36.24256, -80.47639 36.25473, -80.53688 36.256… 3 5 6
#> 4 (((-76.00897 36.3196, -76.01735 36.33773, -76.03288 36.3359… 4 1 2
#> 5 (((-77.21767 36.24098, -77.23461 36.2146, -77.29861 36.2115… 5 9 3
#> 6 (((-76.74506 36.23392, -76.98069 36.23024, -76.99475 36.235… 6 7 5
if (require(tidyr, quietly = TRUE) && require(dplyr, quietly = TRUE)) {
storms.sf = st_as_sf(storms, coords = c("long", "lat"), crs = 4326)
x <- storms.sf %>% group_by(name, year) %>% nest
trs = lapply(x$data, function(tr) st_cast(st_combine(tr), "LINESTRING")[[1]]) %>%
st_sfc(crs = 4326)
trs.sf = st_sf(x[,1:2], trs)
plot(trs.sf["year"], axes = TRUE)
}